(3.210.184.142) 您好!臺灣時間:2021/05/13 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃筑君
研究生(外文):Chu-Chun Huang
論文名稱:C型肝炎病毒內部核醣體進入位置與真核細胞轉譯起始因子Ⅲ次單元之交互作用機制
論文名稱(外文):Interactions between the internal ribosome entry site of hepatitis C virus and eukaryotic initiation factor 3 subunits
指導教授:張明富
指導教授(外文):Ming-Fu Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:62
中文關鍵詞:C型肝炎病毒轉譯內部核醣體進入位置
外文關鍵詞:hepatitis C virustranslationinternal ribosome entry site
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
C型肝炎病毒 (hepatitis C virus, HCV) 為非A非B型肝炎的主要致病原,與慢性肝炎、肝硬化及肝細胞癌的形成有密切關係。HCV為一具有正向單股且全長約9.6 kb之基因體的 RNA 病毒。病毒基因體組成包含5’ 端非轉譯區 (noncoding region, NCR)、可以轉譯後出約 3000 個胺基酸多蛋白質 (polyprotein) 之開放編閱架構 (open reading frame),以及3’ 端非轉譯區。5’ 端非轉譯區在不同病毒分離株之間具有高度保守性。轉譯起始是由internal ribosome entry site (IRES) 所調控,其範圍涵蓋幾乎整個 5’ 端非轉譯區與轉譯起始點 AUG後約 30 nt 之序列。IRES 可形成穩定的二級與三級結構,在功能上代替許多轉譯起始因子能直接吸引 40S 核醣體次單元及轉譯起始因子Ⅲ (eukaryotic initiation factor 3 ; eIF3)。eIF3 為一個 650 kDa 複合體,包含至少有十個不同蛋白質。利用純化之eIF3證明其中的p116和p170兩個次單元體會專一性結合至HCV IRES 的domain Ⅲ。根據二級結構預測,p116在靠近N端 (a.a. 185-268) 具有一個可能的 RNA recognition motif (RRM)。本實驗室過去也曾以gel retardation assay 及定點突變配合西北方墨點法,證實p116-RRM與domain Ⅲ 之間的交互作用。然而,在最近之報告中,利用 SERF (selection of random RNA fragments)方法發現p116 (a.a. 227-320) 會專一性的與HCV IRES的domain Ⅱ結合。因此本研究主要探討 eIF3 次單元 p116與 HCV IRES 之 domain Ⅱ 和 domain Ⅲ 結合能力之差異及 HCV IRES 上之 cis-elements 在轉譯功能所扮演之角色。利用filter binding assay顯示domainⅡ 頂端 (nt 65-102) 和 domain Ⅲabcd (nt 131-278) 對於 p116-RRM有相類似的結合能力。我們亦嘗試建立 SERF 方法,找尋 p116-RRM 在 IRES 上的最小結合區域。另外,在活體外轉譯實驗中加入 domain Ⅱ 頂端部分或domain Ⅲabcd RNA,會抑制 HCV IRES 所引導之核心蛋白質的合成。本研究對細胞因子 eIF3 次單元與 HCV IRES的交互作用的探討,有助於對 HCV 內部起始轉譯機制的進一步瞭解。
Hepatitis C virus (HCV), the major infectious agent of non-A, non-B hepatitis, often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV is a positive-sense, single-stranded RNA virus of genomic size 9.6 kb in length. The viral genome consists of a 5’ noncoding region (NCR), a large open reading frame encoding a polyprotein of approximately 3000 amino acids, and a 3’ NCR. The 5’NCR is highly conserved among HCV isolates. Translation initiation of HCV is controlled by the internal ribosome entry site (IRES) encompassing almost the entire 5’NCR and the sequences about 30 nt downstream the AUG codon. The IRES folds into a stable secondary and tertiary structure and functionally replaces several initiation factors by directly recruiting the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). The eIF3 complex is composed of at least ten different proteins with 650 kDa. Two subunits of eIF3 complex, p116 and p170, have been demonstrated to specifically bind to the domain Ⅲ of HCV IRES. According to secondary structure prediction, p116 contains a putative RNA recognition motif (RRM) near the N terminal region (a.a. 185-268). By performing gel retardation assay and site-directed mutagenesis previously, our laboratory has demonstrated the interaction between p116-RRM and the domain Ⅲ of HCV IRES. Nevertheless, the p116 subdomain from amion acid 227 to 320 was recently identified to interact with the domain Ⅱ apical part of HCV IRES by using the technique of SERF (selection of random RNA fragments). In this study, binding ability of eIF3 p116 subunit to HCV IRES domain Ⅱ and domain Ⅲ were further examined to learn the roles of the cis-elements involved in the internal initiation of translation. A similar binding ability of p116-RRM to the HCV IRES domain Ⅱ (nt 65-102) and the domain Ⅲabcd (nt 131-278) was found by filter binding assay. An attempt to set up the SERF technique was also made to determine the minimal binding region of p116-RRM on the HCV IRES. In addition, by adding the RNA representing the apical domain of domain Ⅱor domain Ⅲabcd as competitor in an in vitro translation assay, the synthesis of core protein mediated by the HCV IRES was inhibited. The studies of interaction between the eIF3 subunit and HCV IRES will help us to understand the control mechanisms of the internal initiation of HCV.
誌謝 ………………………………………………………… Ⅰ
中文摘要 …………………………………………………… Ⅱ
英文摘要 …………………………………………………… Ⅳ
縮寫表 ……………………………………………………… Ⅵ
緒論 ………………………………………………………… 1
實驗材料來源 ……………………………………………… 11
實驗方法 …………………………………………………… 14
實驗結果 …………………………………………………… 30
討論 ………………………………………………………… 35
圖表 ………………………………………………………… 39
參考文獻 …………………………………………………… 52
Ali, N., and Siddiqui, A. (1995). Interaction of polypyrimidine tract-binding protein with the 5'' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. Virol. 69, 6367-6375.

Ali, N., Pruijn, G. J., Kenan, D. J., Keene, J. D., and Siddiqui, A. (2000). Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J. Biol. Chem. 275, 27531-27540.

Alter, H. J., Purcell, R. H., Shih, J. W., Melpolder, J. C., Houghton, M., Choo, Q.-L. and Kuo, G. (1989). Detection of antibody to hepetatis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. New Eng.l J. Med. 321, 1494-1500.

Asabe, S. I., Tanji, Y., Satoh, S., Kaneko, T., Kimura, K., and Shimotohno, K. (1997). The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J. Virol. 71, 790-796.

Bartenschlager R., A.-L. L., Mous J., and Jacobsen H. (1993). Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67, 3835-3844.

Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. (1994). Kinetic and structural analyses of hepatitis C virus polyprotein processing. J. Virol. 68, 5045-5055.

Behrens, S. E., Tomei, L., and De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15, 12-22.

Brown, E. A., Zhang, H., Ping, L. H., and Lemon, S. M. (1992). Secondary structure of the 5'' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20, 5041-5045.

Bukh, J., Miller, R. H., Kew, M. C. and Purcell, R. H. (1993). Hepatitis C virus RNA in southern African blacks with hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 90, 1848-1851.

Bukh, J., Purcell, R. H., and Miller, R.H. (1994). Sequence analysis of the core gene of 14 Hepatitis C Virus genotypes. Proc. Natl. Acad. Sci. USA 91, 8239-8243.

Buratti, E., Tisminetzky, S., Zotti, M., and Baralle, F. E. (1998). Functional analysis of the interaction between HCV 5''UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res. 26, 3179-3187.

Carrère -Kremer, S., Montpellier-Pala, C., Cocquerel, L., Wychowski, C., Penin, F., and Dubuisson, J. (2002). Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol. 76, 3720-3730.

Chang, J., Yang, S. H., Cho, Y. G., Hwang, S. B., Hahn, Y. S., and Sung, Y. C. (1998). Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene. J. Virol. 72, 3060-3065.

Chang, S. C., Yen, J.-H., Kang, H.-Y., Jang, M.-H. and Chang, M.F. (1994). Nuclear localization signals in the core protein of hepatitis C virus. Biochem. Biophys. Res. Commun. 205, 1284-1290.

Chang, S. C., Cheng, J. C., Kou, Y. H., Kao, C. H., Chiu, C. H., Wu, H. Y., and Chang, M. F. (2000). Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J. Virol. 74, 9732-9737.

Cheng, J. C., Chang, M. F., and Chang, S. C. (1999). Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3'' end of the viral RNA. J. Virol. 73, 7044-7049.

Choo, Q.-L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. and Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362.

Choo, Q.-L., Weiner, A. J., Overby, L. R., Kuo, G., Houghton, M. and Bradley, D. W. (1990). Hepatitis C virus: the major causative agent of viral non-A, non-B hepatitis. Brit. Med. Bull. 46, 423-441.

Collier, A. J., Gallego, J., Klinck, R., Cole, P. T., Harris, S. J., Harrison, G. P., Aboul-Ela, F., Varani, G., and Walker, S. (2002). A conserved RNA structure within the HCV IRES eIF3-binding site. Nat. Struct. Biol. 9, 375-380.

Failla, C., Tomei, L., and De Francesco, R. (1994). Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J. Virol. 68, 3753-3760.

Failla, C., Tomei, L., and De Francesco, R. (1995). An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. J. Virol. 69, 1769-1777.

Fan, Z., Yang, Q. R., Twu, J. S., and Sherker, A. H. (1999). Specific in vitro association between the hepatitis C viral genome and core protein. J. Med. Virol. 59, 131-134.

Farci, P., Alter, H. J., Govinndarajan, S., Wong, D. C., Lesniewski, R. R., Mushahwar, I. K., Desai, S. M., Millwe, R. H., Orgata, N. and Purcell, R. H. (1992). Lack of protective immunity against reinfection with hepatitis C virus. Science 258, 135-140.

Fukushi, S., Kurihara, C., Ishiyama, N., Hoshino, F. B., Oya, A., and Katayama, K. (1997). The sequence element of the internal ribosome entry site and a 25-kilodalton cellular protein contribute to efficient internal initiation of translation of hepatitis C virus RNA. J. Virol. 71, 1662-1666.

Fukushi, S., Okada, M., Kageyama, T., Hoshino, F. B., and Katayama, K. (1999). Specific interaction of a 25-kilodalton cellular protein, a 40S ribosomal subunit protein, with the internal ribosome entry site of hepatitis C virus genome. Virus Genes 19, 153-161.

Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., and Katayama, K. (2001). Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824-20826.

Glue, P., Rouzier-Panis, R., Raffanel, C., Sabo, R., Gupta, S. K., and Salfi, M. (2000). A dose-ranging study of pegylated interferon alfa-2b and ribavirin in chronic hepatitis C. The hepatitis C intervention therapy group. Hepatology 32, 647-653.

Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M., and Rice, C. M. (1993). Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J. Virol. 67, 2832-2843.

Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M., and Rice, C. M. (1993). Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385-1395.

Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y., and Jang, S. K. (1998). Heterogeneous nuclear ribonucleoprotein L interacts with the 3'' border of the internal ribosomal entry site of hepatitis C virus. J. Virol. 72(11), 8782-8788.

Han, J. H., Shyamala, V., Richman, K. H., Brauer, M. J., Irvine, B., Urdea, M. S., Tekamp-Olson, P., Kuo, G., Choo, Q. L., and Houghton, M. (1991). Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5'' untranslated region and poly(A) tails at the 3'' end. Proc. Natl. Acad. Sci. USA 88, 1711-1715.

Hayashi, J., Aoki, H., Arakawa, Y. and Hino, O. (1999). Hepatitis C virus and hepatocarcinogenesis. Intervirology 42, 205-210.

Hijikata, M., Mizushima, H., Akagi, T., Mori, S., Kakiuchi, N., Kato, N., Tanaka, T., Kimura, K., and Shimotohno, K. (1993). Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol. 67, 4665-4675.

Honda, M., Brown, E. A., and Lemon, S. M. (1996). Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955-968.

Honda, M., Ping, L. H., Rijnbrand, R. C., Amphlett, E., Clarke, B., Rowlands, D., and Lemon, S. M. (1996). Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222, 31-42.

Honda, M., Beard, M. R., Ping, L. H., and Lemon, S. M. (1999). A phylogenetically conserved stem-loop structure at the 5'' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 73, 1165-1174.

Hu, K. H., Vierling, J. M., and Redeker, A. G. (2001). Viral, host, and interferon-related factors modulating the effect of interferon therapy for hepatitis C virus infection. J. Viral Hepat. 8, 1-18.

Hwang, L. H., Hsieh, C. L., Yen, A., Chung, Y. L., and Chen, D. S. (1998). Involvement of the 5'' proximal coding sequences of hepatitis C virus with internal initiation of viral translation. Biochem. Biophys. Res. Commun. 252, 455-460.

Ito, T., Tahara, S. M., and Lai, M. M. (1998). The 3''-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J. Virol. 72, 8789-96.

Ito, T., and Lai, M. M. (1999). An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3''-untranslated sequence. Virology 254, 288-296.

Izumi, R. E., Valdez, B., Banerjee, R., Srivastava, M., and Dasgupta, A. (2001). Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res. 76, 17-29.

Jubin, R., Vantuno, N. E., Kieft, J. S., Murray, M. G., Doudna, J. A., Lau, J. Y., and Baroudy, B.M. (2000).

Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J. Virol. 74, 10430-10437.

Kaito, M., Watanabe, S., Tsukiyama-Kohara, K., Yamaguchi, K., Kobayashi, Y., Konishi, M., Yokoi, M., Ishida, S., Suzuki, S., and Kohara, M. (1994). Hepatitis C virus particle detected by immunoelectron microscopic study. J. Gen. Virol. 75 ( Pt 7), 1755-1760.

Kato, J., Kato, N., Moriyama, M., Goto, T., Taniguchi, H., Shiratori, Y., and Omata, M. (2002). Interferons specifically suppress the translation from the internal ribosome entry site of hepatitis C virus through a double-stranded RNA-activated protein kinase-independent pathway. J. Infect. Dis. 186, 155-163.

Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S., Sugimura, T., and Shimotohno, K. (1990). Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl. Acad. Sci. USA 87, 9524-9528.

Kato, N., Yoshida, H., Kioko Ono-Nita, S., Kato, J., Goto, T., Otsuka, M., Lan, K., Matsushima, K., Shiratori, Y., and Omata, M. (2000). Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 32, 405-412.

Kieft, J. S., Grech, A., Adams, P., and Doudna, J. A. (2001). Mechanisms of internal ribosome entry in translation initiation. Cold Spring Harb Symp Quant Biol 66, 277-283.

Kieft, J. S., Zhou, K., Grech, A., Jubin, R., and Doudna, J. A. (2002). Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat. Struct. Biol. 9, 370-374.

Kozak, M. (1989). The scanning model for translation: an update. J. Cell. Biol. 108, 229-241.

Kruger, M., Beger, C., Li, Q. X., Welch, P. J., Tritz, R., Leavitt, M., Barber, J. R., and Wong-Staal, F. (2000). Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc. Natl. Acad. Sci. U SA 97, 8566-8571.

Kuo, G., Choo, Q. L., Alter, H. J., Gitnick, G. L., Redeker, A. G., Purcell, R. H., Miyamura, T., Dienstag, J. L., Alter, M. J., Stevens, C. E., Tegtmeier,G. E., Bonino F., Colombo M., Lee W.-S., Kuo C., Berger K., Shuster J. R., Overby L. R., Bradler D. W. and Houghton M. (1989). An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364.

Lai, M. Y., Kao, J. H., Yang, P. M., Wang, J. T., Chen, P. J., Chan, K. W., Chu, J. S., and Chen, D. S. (1996). Long-term efficacy of ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology 111, 1307-1312.

Le, S. Y., Liu, W.M., and Maizel, J. V. Jr. (1998). Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses. Virus Genes. 17, 279-295.

Lo, S.-Y., Sely, M., and Ou, J.-H. (1996). Interaction between hepatitis C virus core protein and E1 envelope protein. J. Virol. 70, 5177-5182.

Lohmann, V., Korner, F., Herian, U., and Bartenschlager, R. (1997). Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416-8428.

Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P., and Puglisi, J. D. (2000). Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol. 7, 1105-1110.

Lukavsky, P. J., Kim, I., Otto, G. A., and Puglisi, J. D. (2003). Structure of HCV IRES domain II determined by NMR. Nat. Struct. Biol. 10, 1033-1038.

Melgar, E., and Goldthwait, D. A. (1968). Deoxyribonucleic acid nucleases. I. The use of a new method to observe the kinetics of deoxyribonucleic acid degradation by deoxyribonuclease I, deoxyribonuclease II, and Escherichia coli endonuclease I. J. Biol. Chem. 243, 4401-4408.

Merrick, W. C. (1992). Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56, 291-315.

Methot, N., Rom, E., Olsen, H., and Sonenberg, N. (1997). The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J. Biol. Chem. 272, 1110-1116.

Meunier, J. C., Fournillier A., Choukhi, A., Cahour, A., Cocquerel, L., Dubuisson J., and Wychowski, C. (1999). Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of glycans on the formation of the HCV glycoprotein. J. Gen. Virol. 80, 887-896.

Moradpour, D., Brass, V., Gosert, R., Wolk, B., and Blum, H. E. (2002). Hepatitis C: molecular virology and antiviral targets. Trends Mol. Med. 8, 476-482.

Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., , and Nedderman, P., Clementi, A., and De Francesco, R. (1998). Hyperphospho- rylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J. Virol. 73, 9984-9991.

Nasoff, M. S., Zebedee, S. L., Inchauspe, G., and Prince, A. M. (1991). Identification of an immunodominant epitope within the capsid protein of hepatitis C virus. Proc. Natl. Acad. Sci. USA 88, 5462-5466.

Neddermann P., T. L., Steinkuhler C., Gallinari P., Tramontano A., and De Francesco R. (1997). The nonstructural proteins of the hepatitis C virus: structure and functions. Biol. Chem. 378, 469-476.

Oh, S. K., and Sarnow, P. (1993). Gene regulation: translational initiation by internal ribosome binding. Curr Opin Genet Dev. 3, 295-300.

Park, J. S., Yang, J. M., and Min, M. K. (2000). Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem. Biophys. Res. Commun. 267, 581-587.

Pawlotsky, J. M. (1998). Hepatitis C virus infection : viral/host interactions. J. Viral. Hepat. Suppl 1, 3-8.

Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. and Hellen C. U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitic C and classical swine fevervirus RNAs. Genes Dev. 12, 67-83.

Ray, R. B., Lagging, L. M. Meyer, K., Steete, R. and Ray, R. (1995). Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 37, 209-220.

Reddy, K. R., Wright, T. L., Pockros, P. J., Shiffman, M., Everson, G., Reindollar, R., Fried, M. W. (2001). Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology 33, 433-438.

Reynolds, J. E., Kaminski, A., Carroll, A. R., Clarke, B. E., Rowlands, D. J., and Jackson, R. J. (1996). Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2, 867-878.

Rijnbrand, R., Bredenbeek, P., van der Straaten, T., Whetter, L., Inchauspe, G., Lemon, S., and Spaan, W. (1995). Almost the entire 5'' non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett. 365, 115-119.

Rosenberg, S. (2001). Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313, 451-464.

Saito, I., Miyamura, T., Ohbayashi, A., Harada, H., Katayama, T., Kikuchi, S., Watanabe, Y., Koi, S., Onji, M., Ohta, Y., Choo, Q.-L., Houghton, M. and Kuo, G. (1990). Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 87, 6547-6549.

Santolini, E., Migliaccio, G., and La Monica, N. (1994). Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol. 68, 3631-3641.

Santolini, E., Pacini, L., Fipaldini, C., Migliaccio, G., and Monica, N. (1995). The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J. Virol. 69, 7461-7471.

Simmonds, P., Smith, D. B., McOmish, F., Yap, P. L., Kolberg, J., Urdea, M. S., and Holmes, E. C. (1994). Identification of genotypes of hepatitis C virus by sequence comparisons in the core, E1 and NS-5 regions. J. Gen. Virol. 75, 1053-1061.

Sizova, D. V., Kolupaeva, V. G., Pestova, T. V., Shatsky, I. N., and Hellen, C. U. (1998). Specific interaction of eukaryotic translation initiation factor 3 with the 5'' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72, 4775-4782.

Spahn, C. M., Kieft, J. S., Grassucci, R. A., Penczek, P. A., Zhou, K., Doudna, J. A., and Frank, J. (2001). Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959-1962.

Spangberg, K., and Schwartz, S. (1999). Poly(C)-binding protein interacts with the hepatitis C virus 5'' untranslated region. J. Gen. Virol. 80, 1371-1376.

Stelzl, U., and Nierhaus, K. H. (2001). SERF: in vitro election of random RNA fragments to identify protein binding sites within large RNAs. Methods 25, 351-357.

Tai, C. L., Chi, W. K., Chen, D. S., and Hwang, L. H. (1996). The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70, 8477-8484.

Tanji, Y., Kaneko, T., Satoh, S., and Shimotohno, K. (1995). Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J. Virol. 69, 3980-3986.

Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N., and Lai, M. M. (1999). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107-110.

Tsukiyama-Kohara, K., Iizuka, N., Kohara, M, and Nomoto, A. (1992). Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66, 1476-1483.

Wang, C., Sarnow, P., and Siddiqui, A. (1994). A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J. Virol. 68, 7301-7307.

Wang, C., and Siddiqui, A. (1995). Structure and function of the hepatitis C virus internal ribosome entry site. Curr. Top. Microbiol. Immunol. 203, 99-115.

Wang, C., Le, S. Y., Ali, N., and Siddiqui, A. (1995). An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5'' noncoding region. RNA 1, 526-537.

Weiner, A. J., Brauer, M.J., Rosenblatt, J., Richman, K. H.,Tung, J., Cawford, K., Bonino, F., Saracco, G., Choo Q.-L., Houghton, M. and Han, J. H. (1991). Variable and hypervariable domains are found in the region of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180, 842-848.

Yen, J. H., Chang, S. C., Hu, C. R., Chu, S. C., Lin, S. S., Hsieh, Y. S., and Chang, M. F. (1995). Cellular proteins specifically bind to the 5''-noncoding region of hepatitis C virus RNA. Virology 208, 723-732.

Zhao, W. D., and Wimmer, E. (2001). Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J. Virol. 75, 3719-3730.

吳瑞菁 (1999). Molecular mechanisms of eukaryotic initiation factor 3 involved in the internal initiation of hepatitis C virus translation. 國立台灣大學醫學院生化學研究所碩士論文.

廖勻楓 (2001). The role of RNA recognition motif of eukaryotic initiation factor 3 subunit p116 in the translation of hepatitis C virus. 國立台灣大學醫學院生化學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李孝悌,〈在論市民社會(Civil Society):從黑格爾到葛蘭西〉,《中國論壇》第340期,頁73-80。
2. 杭之,1991,〈台灣社會的歷史性挑戰〉,《二十一世紀》第五期,頁41-52,香港中文大學。
3. 李永熾,1990,〈市民社會與國家〉,《當代》第四十七期,頁29-38。
4. 何方,1990,〈從「民間社會」論人民民主〉,《當代》第四十七期,頁39-52。
5. 石元康,1990,〈個殊性原則與現代性:黑格爾論市民社會〉,《當代》第四十七期,頁20-28。
6. 王振寰,1991,〈出現中的市民社會及其限制〉,《二十一世紀》第五期,頁57-67,香港中文大學。
7. 周志龍,1997,〈全球經濟發展與國土規劃開發體制變遷-台灣與英國為例〉,《思與言》第35卷第3期,頁139-189。
8. 洪明仕,2000,〈漫談香山濕地的生態環境〉,《竹塹文獻雜誌》第十六期,頁6-23。
9. 南方朔,1986,〈台灣的新社會運動〉,《中國論壇》第269期,頁36-40。
10. 孫善豪,1989,〈「民間社會」與「文明社會」:民間社會理論對葛蘭西的誤解〉,《中國論壇》第336期,頁30-33。
11. 夏鑄九,1991,〈市民城市之浮現〉,《二十一世紀》第五期,頁73-85,香港中文大學。
12. 賴宗裕,2000,〈跨世紀國土規劃願景之芻議-以成長管理及永續發展之觀點論述〉,《經社法制論叢》第二十五期,頁257-285。
 
系統版面圖檔 系統版面圖檔