(3.238.173.209) 您好!臺灣時間:2021/05/08 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊宏
研究生(外文):Jyun-Hong Lin
論文名稱:以有限差分時域法分析光子晶體及色散現象
論文名稱(外文):Finite-Difference Time-Domain Modeling of Photonic Crystals and Dispersive Phenomena
指導教授:邱奕鵬
指導教授(外文):Yih-Peng Chiou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:193
中文關鍵詞:平面波展開法負折射率有限差分時域法光子晶體
外文關鍵詞:plane wave expansionFinite-Difference Time-DomainFDTDPhotonic Crystalsnegative refractive index materialsPWM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以無損及非色散有限差分時域法研究幾種二維光子晶體結構,使用的波源以全場散射場法來產生平面波或高斯波束,邊界條件則為同向性完美匹配層,其中垂直於平面的場需分裂為二個場來達到阻抗匹配。我們分析了L型光子晶體波導,T型分波光子晶體波導,十字交錯型光子晶體波導。我們也模擬了傳統型介質波導來相互比較其間的差異性及優缺點。這些結構均是以橫向磁場模擬為主。另外我們也模擬了微共振腔型濾波器,它分為二種基本型,分別為環型及盤型。其中我們又討論了以兩個相鄰很近的環型波導所組成的濾波器,其共振模態就類似一較粗的環型波導。同樣的以光子晶體為基礎的濾波器,包括單極型以及雙極簡併型共振腔。研究的第二部份以平面波展開法為主,探討頻帶結構及光子晶體波導的缺陷模態。在不同極化波的考量下,我們可利用此方法來建構不同光子晶體排列所對應的頻帶結構圖。它可方便我們日後查詢在不同的條件下適合的光子頻隙,或是光子頻隙最佳化的考量依據。我們也用此法來計算光子晶體共振腔的模態。最後,我們討論負折射率物質所形成的方型稜鏡,三角型稜鏡及凹透鏡其中多次折射的總合現象。探討其結構然後與正折射率物質來比較。很有趣的發現在負折射率物質相位速度與群速有相反的方向,而在正折射率物質,則兩個方向為相同。
In this research, the lossless and nondispersive finite-difference time-domain (FDTD) method with staircase approximation and the split-field perfectly matched layer boundaries is employed to model several types of photonic devices in two dimensions. L-bends, T-branches, and waveguide crossings made in both conventional slab waveguides and photonic crystals for transverse magnetic modes are analyzed. Microcavity resonator based filters including micro-rings and micro-disks are also analyzed, as well as channel dropping filters in the forms of photonic crystal monopole cavity and doubly degenerate hexapole cavities. In the second part of this research, the plane wave expansion method is employed to model the photonic crystal band structures or defect modes in photonic crystal defect waveguides. We also build up the band gap maps in rectangular lattice for TE and TM modes. The resonant modes of a rectangular photonic crystal cavity are also investigated by this approach. Finally, we discuss the negative refractive index materials in different photonic components like square and triangular prisms. We compare them with the normal ones. Interestingly we find that the phase velocity is opposite to the group velocity and the refraction direction is different from those in the normal index materials.
List of Figures iv
CHAPTER 1 1
Introduction 1
1.1 Motivation 1
1.2 General Reviews of Photonic Crystals Waveguides and Couplers 3
1.3 Thesis Outline 5
CHAPTER 2 14
Computational Methods of Photonic Crystal 14
2.1 Plane Wave Expansion Method 14
2.1.1 Wave Equation and Eigenvalue Problems 14
2.2 Finite-Difference Time-Domain Method 17
2.2.1 3-D Maxwell’s Equations 17
2.2.2 Finite Differences and Notations for Discretization 19
2.2.3 Yee’s SCHEME 19
2.3 Maxwell’s Equations and Yee’s Scheme in 2D TEz and TMz Modes 21
2.3.1 The TMz and TEz Modes 21
2.3.2 TMz and TEz Modes in The FDTD Method 22
2.4 Numerical Phase Velocity and Phase Error Analysis 23
2.4.1 Numerical Dispersion Relation 23
2.4.2 Phase Error Analysis 24
2.5 Numerical Stability 26
2.6 Perfectly Matched Layers 28
2.6.1 Mathematically Motivated Perfectly Matched Layers for The TEz Field 28
2.7 The Total-Field/Scattered-Field Technique 37
2.7.1 Ideas and One-Dimensional Formulation 37
2.7.2 Two-Dimemsional Formulation of The TF/SF Technique 42
CHAPTER 3 54
2-D TMz Mode Integrated Optic Waveguide Simulation 54
3.1 Some Remarks Before Simulation 54
3.2 Simple 90-Degree-Bend Waveguide 55
3.3 90-Degree-Bend Waveguide Modified by A Square Resonator Indide The Corner 56
3.4 90-Degree-Bend Waveguide Modified by A Square Resonator With A 45-Degree-Cut at Its Outer Corner 57
3.5 90-Degree-Bend Waveguide Modified by A Quarter-Disk Resonator Cavity 58
3.6 Simple T-Junction 58
3.7 T-Junction Modified by A Resonator 59
3.8 Waveguide Crossings 60
3.9 Mircroring Cavity Channel Drop Filters 60
CHAPTER 4 83
Simulation Results of Photonic Crystal Band Structures 83
4.1 Atlas of Band Gaps for Two-Dimensional Photonic Crystals 83
4.1.1 Band Gap Maps Versus Radius of The Columns 84
4.2 Rectangular Photonic Crystal Cavity 85
4.3 The Shifted-Inverse Power Method (SIPM) 85
CHAPTER 5 106
Photonic Crystal Bends and Junctions of Various Forms 106
5.1 Sharp Bends In Photonic Crystal Form 106
5.2 T-Branches In Photonic CrystalS 110
5.3 Cross WaveguideS In Photonic Crystals 112
5.4 Channel Drop FilterS 115
5.5 Antenna 118
5.6 Coupled-Cavity Waveguide 120
5.7 Waveguide Couplers 122
CHAPTER 6 157
Negative Index Metamaterials 157
6.1 Electromagnetic Response of The Metamaterials 157
6.2 Negative Refraction 160
6.3 2D-FDTD Simulator for TM Case 163
6.4 Focusing In Negative Refractive Index 167
6.5 Negative Space 169
CHAPTER 7 182
Conclusion 182
References 184
[1]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, 1987.
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, 1987.
[3]T. Baba, and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron., vol. 38, no.7, pp. 909-914, 2002.
[4]L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” IEEE J. Lightwave Tech., vol. 21, no. 2, pp. 561-566, 2003.
[5]H.-Y. Ryu, S.-H. Kwon, Yong-Jae Lee, and Yong-Hee Lee, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” App. Phy. Lett., vol. 80, no. 19, pp. 3476-3478, 2002.
[6]H. G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” App. Phy. Lett., vol. 79, no. 19, pp. 3032-3034, 2001.
[7]M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” App. Phy. Lett., vol. 75, no. 8, pp. 1036-1038, 1999.
[8]O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” IEEE J. Lightwave Tech., vol. 17, no. 11, pp. 2082-2088, 1999.
[9]C. J. M. Smith and R. M. De La Rue, “Coupled guide and cavity in a two-dimensional photonic crystal,” App. Phy. Lett., vol. 78, no. 11, 1487-1489, 2001.
[10] J. Moosburger, M. Kamp, F. Klopf, J. P. Reithmaier, and A. Forchel, “Semiconductor lasers with 2-D photonic crystal mirrors based on a wet-oxidized Al2O3-mask,” IEEE Photonic Tech. Lett., vol. 13, no. 5, pp. 406-408, 2001.
[11]R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photonics Tech. Lett., vol. 15, no. 3, pp. 401-403, 2002.
[12]S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion,” IEEE J. Lightwave Tech., vol. 17, no. 11, pp. 1948-1955, 1999.
[13]C. Jin, S. Fan, S. Han, and D. Zhang, “Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration,” IEEE, J. Quantum Electron., vol. 39, no. 1, pp. 160-165, 2003.
[14]C. Kittel, Introduction to solid state physics: John Wiley, 1996.
[15]宇野亨,林振華編譯, 電磁場與天線分析,使用時域有限差分法(FDTD), 台灣: 全華,1999
[16]Y. Sugimoto, N. Ikeda, N. Carlsson, and K. Asakawa, “Theoretical and experimental investigation of straight defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” App. Phy. Lett., vol. 79, no. 26. pp. 4286-4288, 2001.
[17]M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” IEEE J. Lightwave Tech., vol. 18, no. 10, pp. 1402-1411, 2000.
[18]M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” App. Phy. Lett., vol. 76, no. 8, pp. 952-954, 2000.
[19]D. L. Lee, Electromagnetic properties of integrated optics, New York: Wiley, 1986.
[20]A. W. Snyder and J. D. Love, Optical waveguide theory, London, U. K.: Chapman & Hall, 1995.
[21]R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti diffused lithium niobate LiNbO3 optical directional couplers,” Appl. Opt., vol. 18, no. 23, pp. 4012-4016, 1979.
[22]S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 38, no. 1, pp. 47-53, 2002.
[23]M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” IEEE/OSA J. Lightwave Tech., vol. 19, no. 12, pp. 1970-1975, 2001.
[24]A. Martinez, F. Cuesta, and J. Martin, “Ultrashort 2-D photonic crystal directional couplers,” IEEE J. Photonics Tech. Lett., vol. 15, no. 5, pp. 694-696, 2003.
[25]S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 38, no. 10, pp. 1349-1352, 2002.
[26] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals — Molding the flow of light, New Jersey: Princeton University Press, 1995.
[27] K. S. Yee, “Numerical solution of initial boundary value problems involving Max-well’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 3, pp. 302-307, 1966.
[28] A. Taflove, S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, Boston-London: Artech House, 2000.
[29] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computational Phys., vol. 114, pp. 185-200, 1994.
[30] W. C. Chew, and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equation with stretched coordinates,” Microwave Optical Technol. Lett., vol. 7, pp. 599-604, 1994.
[31] S. Abarbanel, and D. Gottlieb, “A mathematical analysis of the PML method,” J. Computational Phys., vol. 134, pp. 357-363, 1997.
[32] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched an-isotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagation, vol. 43, pp. 1460-143, 1995.
[33] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas and Propagation, vol. 44, pp. 1630-1639, 1996.
[34] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol. 23, pp. 377-382, 1981.
[35] M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary con-ditions for photonic crystal waveguide simulations,” IEEE. Microwave and Wireless Components Lett., vol. 11, no. 4, pp. 152-154, 2001.
[36] A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 502-504, Dec. 1999.
[37] K. R. Umashankar, and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagnetic Compatibility, vol. 24, pp. 397-405, 1982.
[38] C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol., vol. 17, pp. 1682-1692, 1998.
[39] S. N. Radcliffe, and T. P. Young, “New low-loss bend structures for high-density integrated optical switch arrays,” IEEE J. Select. Area. Commun., vol. 6, pp. 1169-1177, 1988.
[40] S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, and R. H. Bosworth, “Greatly re-duced losses for small-radius bends in Ti:LiNbO3 waveguides,” Appl. Phys. Lett., vol. 8, pp. 92-94, 1986.
[41] K. Hirayama, and M. Koshiba, “A new low-loss structure of abrupt bends in di-electric waveguides,” J. Lightwave Technol., vol. 10, pp. 563-569, 1992.
[42] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron., vol. 30, pp. 2827-2835, 1994.
[43] A. Ditkowski, K. Dridi, and J. S. Hesthaven, “Convergent cartesian grid methods for Maxwell’s equations in complex geometries,” J. Computational Phys., vol. 170, pp. 39-80, 2001.
[44] M. G. Daly, P. E. Jessop, and D. Yevick, “Crosstalk reduction in intersecting rib waveguide,” J. Lightwave Technol., vol. 14, pp. 1695-1698, 1996.
[45] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol., vol. 15, no. 6, June 1997.
[46] H. A. Haus and R. V. Schmidt, “Transmission response of cascaded gratings,” IEEE Trans. Sonics Ultrason., vol. SU-24, pp. 94-101, 1977.
[47] H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feed-back resonators,” J. Quantum Electron., vol. 28, pp. 205-213, 1992.
[48] E. A. J. Marcatilli, “Bends in optical dielectric waveguides,” B.S.T.J., vol. 48, pp. 2103-2132, 1969.
[49] P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Amer. A, vol. 5, pp. 803-812, 1988.
[50] K. Oda, N. Tokato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol., vol. 9, pp. 728-736, 1991.
[51] S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonator with a wide free spectral range of 100 GHz,” J. Lightwave Technol., vol. 13, pp. 1766-1771, 1991.
[52] Y. Yamamoto and R. E. Slusher, “ Optical processes in microcavities,” Phys. Today, pp. 66-73, June 1993.
[53] Z. Zhang. D. Chu, S. Wu, S. Ho, W. Bi, C. Tu, and R. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett., vol. 75, pp. 2678-2681, 1995.
[54] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whis-pering-gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp. 289-291, 1992.
[55] B. E. Little, S. T. Chu, and H. A. Haus, in LEOS 8th Annu. Meeting, Inst. Elec. Electron. Eng., NY, 1995, paper WDM 2.3.
[56] B. E. Little and S. T. Chu, “Estimating surface roughness loss and output coupling in microdisk resonators,” Opt. Lett., vol. 21, pp. 1390-1392, 1996.
[57] B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contra-direc-tional coupling in ring and disk resonators,” Opt. Lett., vol. 22, pp. 4-6, 1997.
[58] Y. Chung, and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron., vol. 26, pp. 1335-1338, 1990.
[59] P. L. Liu, and B. J., Li, “Semivectorial beam-propagation method for analyzing polarized modes of rib waveguides,” IEEE J. Quantum Electron., vol. 28, pp. 778-782, 1992.
[60] W. P. Huang, and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, pp. 2639-2649, 1993.
[61] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett, vol. 77, no. 18, pp. 3787-3790, 1996.
[62] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Phtonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476-1479, 1998.
[63] J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol., vol. 17, pp. 1500-1508, 1999.
[64] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett., vol. 77, pp. 3902-3904, 2000.
[65] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., vol. 74, pp. 1370-1372, 1999.
[66] A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett., vol. 75, pp. 1625-1627, 1999.
[67] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819-1821, 1999.
[68] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science, vol. 293, pp. 1123-1125, 2001.
[69] M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B, vol. 61, pp. R11855-R11858, 2000.
[70] M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett., vol. 77, pp. 1937-1939, 2000.
[71] P. R. Villeneuve, D. S. Abrms, S. Fan, and J. D. Joannopoulos, “Single-mode wav-eguide microcavity for fast optical switching,” Opt. Lett., vol. 21, pp. 2017-2019, 1996.
[72] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, pp. 608-610, 2000.
[73] B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett., vol. 25, pp. 1502-1504, 2000.
[74] S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, vol. 18, no. 2, pp. 162-165, 2001.
[75] S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett., vol. 23, no. 23, pp. 1855-1857, 1998.
[76] K. Aretz and H. Bulow, “Reduction of crosstalk and losses of intersecting wave-guide,” Electron. Lett., vol. 25, pp. 730-731, 1989.
[77] M. G. Daly, P. E. Jessop, and D. Yevick, “Crosstalk reduction in intersecting rib waveguides,” J. Lightwave Technol., vol. 14, pp. 1695-1698, 1996.
[78] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, H. A. Haus, “Channel drop tunnel-ing through localized states,” Phys. Rev. Lett., vol. 80, no. 5, pp. 960-963, 1998.
[79] C. C. Eugster and J. A. del Alamo, “Tunneling spectroscopy of an electron wave-guide,” Phys. Rev. Lett., vol. 67, pp. 3586-3589, 1991.
[80] C. C. Eugster, J. A. del Alamo, M. J. Rooks, and M. R. Melloch, “One-dimensional to one-dimensional tunnelling between electron waveguides,” Appl. Phys. Lett., vol. 64, pp. 3157-3159, 1994.
[81] H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol., vol. 10, pp. 57-62, 1992.
[82] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol., vol. 15, pp. 998-1005, 1997.
[83] A. R. Weily, K. P. Esselle, and B. C. Sanders, “Photonic crystal horn and array antennas,” Phys. Rev. Lett., vol. 68, pp. 106609-1-6, 2003.
[84] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., vol. 24, no. 11, pp. 711-713, 1999.
[85] See, for example, N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976).
[86] A. Yariv, and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
[87] S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 38, no. 10, pp. 1349-1352, 2002.
[88] S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electro-magnetic waves in parallel 2-D photonic crystal waveguides,” IEEE. J. Quantum Electron., vol. 38, no. 1, pp. 47-53, 2002.
[89] A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE. J. Quantum Elec-tron., vol. QE-9, pp. 919-933, 1973.
[90] Y. Seumatsu and K. Kishino, “Coupling coefficient in strongly coupled dielectric waveguides,” Radio Sci., vol. 12, pp. 587-592, 1977.
[91] E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and cou-pled-mode analyzes of parallel waveguides,” IEEE J. Quantum Electron., vol. QE-20, pp. 1311-1319, Dec, 1984.
[92] L. D. Landau and E. M. Lifshitz, Quantum mechanics non-relativistic theory. New York: Addison-Wesley, 1958.
[93] R. C. Alferness, R. V. Schmidt, and E. H. Tuner, “Characteristics of Ti diffused LiNbO3 optical directional couplers,” Appl. Opt., vol. 18, pp. 4012, 1979.
[94] I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE. J. Quantum Electron., vol. 34, pp. 1772-1781, 1998.
[95] J. B. Pendry and D. R. Simith, “ Reversing light: negative refraction,” Physics Today, pp. 1-8, Dec, 2003.
[96] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE transactions on microwave theory and techniques, vol. 47, pp. 2075, 1999.
[97] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” , Science, vol. 292, pp. 77-79, 2001.
[98] A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s low,” Phys. Rev. Lett., vol. 90, pp. 137401-1-4, 2003.
[99] A. Gribic, and G. V. Eleftheriades, “Growing evanescent waves in negative-re-fractive-index transmission-line media,” Appl. Phys. Lett., vol. 82, pp. 1815-1817, 2003.
[100] R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double ne-gative metamaterial slabs,” Optics Express, vol. 11, no. 7, pp. 662-681, 2003.
[101] R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E, vol. 64, pp. 056625-1-15, 2001.
[102] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966-3969, 2000.
[103] J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condensed Matter., vol. 15, pp. 6345-6364, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔