(3.238.96.184) 您好!臺灣時間:2021/05/10 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃啟文
研究生(外文):Chi-Wen Huang
論文名稱:玻璃及高分子聚合物光子晶體光纖之光學特性研究
論文名稱(外文):Investigation of Optical Characteristics of Silica- and Polymer-based Photonic Crystal Fibers
指導教授:楊志忠楊志忠引用關係
指導教授(外文):C. C. Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:87
中文關鍵詞:聚合物超寬頻塑膠光子晶體光纖
外文關鍵詞:photonic crystal fibersmicrostructured polymer optical fiberssupercontinuum generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們研究在製作塑膠光子晶體光纖時相關的重要參數,並利用相同的製程製造出各種不同結構的塑膠光子晶體光纖,只要在光纖的微結構上做些釭瘍雂ぇK可以得到截然不同的光纖特性。接著,我們對各種不同結構的塑膠光子晶體光纖研究其光學特性,包含具有實心核心及環形結構的光纖。我們證明所製作出具有實心結構的光纖可以在非常寬的頻段內保持單模狀態,其頻段至少由600至1600奈米。我們亦證明具有較大空孔率的實心結構光纖能具有多模模態,而該光纖能傳輸的模態可以利用有限差分法精確地加以預測。經由實驗跟模擬,我們亦確認出釵h在環形結構中存在的模態,而光纖中的環形模態扮演著如同在步階型光纖中纖殼模態的角色。利用具有環型結構光纖之核心模態以及環型模態的互相耦合,可在光纖通訊系統中作為濾波器及交換器之用。最後,我們利用鎖模式鈦藍寶石雷射成它a在商用玻璃材質光子晶體光纖上產生超寬頻,其輸出頻譜在波長上達530至1450奈米。利用稜鏡組對輸出頻譜中的綠光成份做色散補償,其脈衝寬度成它a由155.9皮秒壓縮為112皮秒。
We report the investigations of the parameters that are critical in fabricating microstructured polymer optical fibers (MPOFs). MPOFs of different structures are manufactured with a fabrication framework. A slight change in microstructure can provide MPOFs of distinct functionalities. Then, we study the optical characteristics of various MPOFs, including solid-core and ring-shaped fibers. We show that the solid-core fiber can provide single-mode waveguiding in a very large spectral range, at least covering from 600 through 1600 nm in wavelength. We also show that the solid-core fiber with a larger air-filling ratio can provide multi-mode operation. The number of the guided modes can be precisely predicted with the finite-difference method. In the ring-shaped fiber, we identify various ring modes from experiments and simulations. The ring modes can play the roles of cladding modes, like in a conventional step-index fiber. Coupling between the core mode and the ring modes in a ring-shaped fiber can be used for filtering and switching in fiber communications. Finally, we successfully implement supercontinuum generation in a commercial silica-based photonic crystal fiber pumped with a mode-locked Ti:Sapphire laser. The output spectrum extends from 530 to 1450 nm in wavelength. The pulse duration of the green-light component of the fiber output spectrum is compressed from 155.9 to 112 ps by using a prism pair for dispersion compensation.
Contents
Chapter 1 Introduction 1
1.1 General Reviews of Photonic Crystal Fiber 1
1.2 Properties of Microstructured Fibers 3
1.3 Properties of Photonic Band Gap Fibers 10
1.3.1 Photonic Band Gap Effect 10
1.3.2 Frustrated Tunneling and Bragg Photonic Band Gap Fibers 12
1.4 Modeling of Photonic Crystal Fibers 14
1.4.1 Finite-Difference Method 15
1.4.2 Transparent Boundary Condition and Symmetry Condition 18
1.5 Research Motivations 20
Chapter 2 Fabrication and Handling of Microstructured Polymer Optical Fibers 30
2.1 Advantages of Microstructured Polymer Optical Fibers 30
2.2 Fabrication of Microstructured Polymer Optical Fibers 31
2.3 Handling of Microstructured Polymer Optical Fibers 34
Chapter 3 Optical Characteristics of Solid-core and Ring-shaped Microstructured Polymer Optical Fibers 42
3.1 Single-mode Microstructured Polymer Optical Fibers 42
3.1.1 Single-mode Operation in Microstructured Polymer Optical Fibers 42
3.1.2 Loss Properties of Single-mode Microstructured Polymer Optical Fibers 45
3.2 Multi-mode Microstructured Polymer Optical Fiber 46
3.3 Ring-shaped Microstructured Polymer Optical Fiber 47
3.4 Air-Core Photonic Band Gap Polymer Fiber 49
Chapter 4 Supercontinuum Generation in Silica-based Microstructured Fibers 65
4.1 Supercontinuum Generation 65
4.1.1 Self-phase Modulation 65
4.1.2 Stimulated Raman Scattering 66
4.1.3 Four-wave mixing 67
4.1.4 Soliton Propagation 68
4.2 Highly Nonlinear Microstructured Fiber 68
4.3 Experiments of Supercontinuum Generation 69
4.4 Dispersion Compensation Using a Prism Pair 71
4.4.1 Principle of Dispersion Compensation Using a Prism Pair
71
4.4.2 Experimental Results of Pulse Compression Using a Prism Pair 73
Chapter 5 Conclusions 81
References 82
References
[1]A. Bjarklev, Optical Fiber Amplifiers: Design and System Application, Artech House, BostonrLondon, (1993).
[2]T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963 (1997).
[3]J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fiber,” Science, vol. 282, pp. 1476-1478 (1998).
[4]R. F. Cregan, B.J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537-1539 (1999).
[5]J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optic. Fiber Technol., vol. 5, pp. 305-330 (1999).
[6]M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, “Microstructured polymer optical fiber,” Opt. Express, vol. 9, pp. 319-327 (2001).
[7]J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547-1549 (1996); Errata, Opt. Lett., vol. 22, pp. 484-485 (1997).
[8]Dimiter G. Ouzonov, Faisal R. Ahmad, Dirk Muller, Natesan Venkatarman, Michael T. Gallagher, Malcolm G. Thomas, John Silcox, Karl W. Koch, Alexander L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science, vol. 301, pp. 1702-1704 (2003).
[9]J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russel and J. P. DeSandro, “Large mode area photonic crystal fiber,” Electron. Lett., vol. 34, pp. 1347-1348 (1998).
[10] M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T.A. Birks, J. C. Knight, and P. St. J. Russell, ”Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett., vol. 35, pp. 63-64 (1999).
[11] W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, pp. 609-613 (2002).
[12] K. Saitoh, and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, pp. 843-852 (2003).
[13] J. K. Ranka, R. S. Windeler, and A. J. Steinz, “Visible supercontinuum generation in an air–silica microstructured optical fiber with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, pp. 25-27 (2000).
[14] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, pp. 1662-1664 (1998).
[15] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cut-off and the V-parameter in photonic crystal fibers,” Opt. Lett. vol. 28, 1879 (2003).
[16] T. P. White, R. C. McPhedran, C. M. de Sterke, M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett., vol. 26, pp. 1660-1662 (2001).
[17] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927-933 (2002).
[18] A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russell, “Designing a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett., vol. 24, pp. 325-327 (1999).
[19] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, “Dispersion of photonic crystal fibers,” Opt. Lett., vol. 23, pp. 1662-1664 (1998).
[20] M. J. Gander, R. McBride, J. D. C. Jones ,D. Mogilevts ev, T. A. Birks ,J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal .bers,” Electron. Lett., vol. 35, 63-64 (1999).
[21] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790-792 (2000).
[22] http://www.crystal-fibre.com
[23] Rune S Jacobsen, Jesper Lægsgaard, Anders Bjarklev and Kristian Hougaard, “Very low zero-dispersion wavelength predicted for single-mode modified-total-internal-reflection crystal fibre,” J. Opt. A: Pure Appl. Opt., vol. 6, pp. 604-607 (2004).
[24] X. Liu, C. Xu, and W. H. Knox, “Soliton self-frequency shift in a short tapered air–silica microstructured fiber,” Opt. Lett., vol. 26, pp. 358-360 (2001).
[25] K. Saitoh, and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,” Opt. Express, vol. 11, pp. 843-852 (2003).
[26] D. Cassagne, C. Jouanin, D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B, vol. 53, 7134 (1996).
[27] J. D. Joannopoulos, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton, 1995.
[28] Chin-ping Yu and Hung-chun Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145-163 (2004).
[29] A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt., vol. 41, 275 (1994)
[30] T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B, vol. 19, pp. 2322-2330 (2002).
[31] M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microwave and Optical Technol. Lett., vol. 30, pp. 327-330 (2001).
[32] Hadley, G. R., “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., vol. 28, pp. 363-370 (1992).
[33] G. Lindefield and J. Penny, Numerical Methods Using MATLAB (2nd Edition, Prentice Hall).
[34] Van Eijkelenborg M. A., Large M. C. J., Argyros A., Zagari J., Manos S., Issa N. A, Bassett I., Fleming S., McPhedran R. C, de Sterke C. M. and Nicorovici N.A.P., “Microstructure polymer optical fibre,” Opt. Express, vol. 9, pp. 319-327 (2001)
[35] Argyros A., Bassett I.M., van Eijkelenborg M. A., Large M. C. J., Zagari J., McPhedran R. C., and Nicorovici N. A. P., “Ring structures in microstructure polymer optical fibres,” Optics Express, vol. 9, pp. 813-820 (2001)
[36] S. Wu, “Surface and interfacial tensions of polymer melts. II. Poly (methyl methacrylate), poly (n-butyl ethacrylate), and polystyrene,” J. Phys. Chem., vol. 74, pp. 632-638 (1970)
[37] Martijn A. van Eijkelenborg, Alexander Argyros, Geoff Barton, Ian M. Bassett, Matthew Fellew, Geoffrey Henry, Nader A. Issa, Maryanne C.J. Large, Steven Manos, Whayne Padden, Leon Poladian, and Joseph Zagari ”Recent progress in microstructured polymer optical fibre fabrication and characterization,” Optic. Fiber Technol., vol. 9, pp. 199-209 (2003)
[38] N.P. Bansal, and R.H. Doremus, Handbook of Glass Properties, Academic Press, New York, 1986.
[39] Z. P. Zheng, “Fabrication of Microstructured Polymer Optical Fibers” Master Thesis (2003)
[40] J. Canning, E. Buckley, N. Groothoff, B-L. Davies, and J. Zagari, “UV Laser Cleaving of Air-Polymer Structured Fibre,” Opt. Comm., vol. 202, pp. 139-143 (2002)
[41] N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express, vol. 10, pp. 341-348 (2002)
[42] Yu-Hsiang Cheng, Chin-Ping Yu, Chi-Wen Huang, Yean-Woei Kiang, Hung-chun Chang, Hua-Kuang Liu, and C. C. Yang, “Coupling behaviors between the core and the ring modes in a novel microstructured fiber and their applications,” CLEO 2003, 5360-41.
[43] R. R. Alfano, Phys. Rev. Lett., 24, 584 (1970)
[44] R. W. Boyd, Nonlinear Optics, Academic Press, San Diego, CA (1992)
[45] R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt., vol. 11, pp. 2489-2494 (1972)
[46] G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic Press, San Diego, CA (2001)
[47] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, pp. 25-27 (2000)
[48] R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett., vol. 9, 5 (1984)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔