(3.239.56.184) 您好!臺灣時間:2021/05/13 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧穎叡
研究生(外文):Ying-Jui Teng
論文名稱:量子點雷射之光學增益與線寬增強因子
論文名稱(外文):Optical Gian and Linewidth Enhancement Factor of Quantum -dot Lasers
指導教授:毛明華毛明華引用關係
指導教授(外文):Ming-Hua Mao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:74
中文關鍵詞:線寬增強因子光學增益量子點雷射
外文關鍵詞:quantum dot laserlinewidth enhancement factoroptical gain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:455
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在光通訊系統中,半導體雷射常常被運用為調變光源,尤其在多波分工的系統中,必須降低不同頻道的波段之間干涉的程度,因此雷射端的頻率穩定性也將成為關鍵的角色。而為了判斷雷射元件操作在高速下的潛力,線寬增強因子(?factor) 將是我們極力研究的重點。?factor,隱含著隨著驅動雷射元件的電訊號大小改變時,連帶產生光訊號啾頻 (chirping) 的現象。尤其在量子點雷射中,?factor往往比量子井雷射來的小,而目前最小值0.1也已經在文獻上被證實。在決定?factor的過程中,我們先採用Hakki與Paoli所提出的方法來量測雷射二極體的自發性放光,並計算出相對應的光學增益頻譜。而透過光學增益頻譜,可以進一步使用KK 關係式求得光折射率在頻譜上擾動的情形,如此便能運用這些資訊,直接從定義上獲得?factor。此外,我們也透過變率方程式與主方程式,從模擬的角度去解釋實驗上所觀察到的現象。?factor的消除將在主方程式中,透過屏除熱偶合效應的影響,而得到證實。並且我們也將討論基態與激發態之間偶合的情況,對於?factor所造成的影響。如此的研究將有助於在設計量子點雷射時,透過能階分佈的情況與操作條件的選擇,來獲得高速調變的能力。
In an optical communication system, a semiconductor laser is usually applied to serve as a modulated light source. Especially in a wavelength division multiplexing scheme, it is required that wavelengths in different channels do not interfere each other under modulation. Therefore the stability of a laser on frequency domain is important. In order to judge the potential of a laser diode applied in the high speed operation, the linewidth enhancement factor ?will be investigated intensively in this study.
The ?factor implies the frequency chirping with changing the driving excitation on a device. Particularly in a QD laser, it offers a smaller ?value than the conventional QW lasers, and a smallest ?value of 0.1 is demonstrated up to now in the literature.
In the determination of the ?factor, firstly we adopt the Hakki-Paoli method to measure the spontaneous emission of a diode then calculate the gain spectra. With the gain spectra, the KK relation is used to observe the refractive index perturbation accordingly. From these information, the ?factor can be determined by the definition in which the relation between the gain spectra and the refractive index is involved.
Moreover, the rate equation model and the master equation model will be applied to explain the phenomenon obtained in the experiment. Prediction of vanishing �� factor at lasing wavelength will be checked by MEM model with no thermal coupling among QDs. Influence of excited states on a factor will be investigated with different energy separation between ground states and excited states respectively. Other major factors influencing the ?factors will be also discussed. Results in this study will be helpful in designing QD lasers with appropriate energy diagram and operation conditions for high-speed operation.
Table of Contents

中文摘要(Chinese Abstract)…………………………………………...Ⅰ
Abstract…………………………………………………………………Ⅱ
Table of Contents ……………………………….....................................Ⅲ

Chapter 1. Introduction 1
1.1 Advantages of quantum-dot lasers 1
1.2 Opto-electronic properties of quantum-dot lasers 1
1.3 Motivation of this study 2
Chapter2. Linewidth Enhancement Factor (? 4
2.1 Linewidth enhancement factor 4
2.2 Kramers-Kronig relation 6
2.3 Optical gain model 13
Chapter 3. Extraction of Gain Spectra - experiments and simulation 16
3.1 Experimental techniques for gain measurement 16
3.2 Hakki – Paoli method ( mode sum minimum method ) 17
3.3 Experimental setup 19
3.4 Rate Equation Model and Master Equation Model 21
Chapter 4 . Experimental and Simulation Results 23
4.1 Gain spectra by experiments 23
4.2 Linewidth enhancement factor from experimental data 43
4.3 Simulation results 55
Chapter 5 . Conclusions 72

References……………………………………………………………….73
[1] L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, Inc., 1995.
[2] T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photonics Technology Letters, Vol. 11, No. 12, 1999.
[3] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, IEEE Journal of Selected Topics in Quantum Electronics, Vol.3, No. 2,1997
[4] C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl .Phys .52(7), 1981
[5] L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg, IEEE Journal of Quantum Electronics, Vol.37, No.3, 2001
[6] A. Oster, F. Bugge, G. Erbert, and H. Wenzel, Institute of Physics Conference Series 156: 207-210 1998
[7] B. W. Hakki and T. L. Paoli, Journal of Applied Physics, Vol. 46, No. 3, 1975.
[8] D. T. Cassidy, J. Appl. Phys 56(11), 1984
[9] H. T. Chen, Influence of Excited State and Temperature Effects on Quantum Dot Lasers Properities-Modeling and Analysis , Graduate Institute of Electronics Engineering, NTU, 2004.
[10] S. K. Lin, Master-Equation Modeling of Quantum-Dot Lasers, Graduate Institute of Electro-Optical Engineering, NTU, 2003.
[11] M. H. Mao, F. Heinrichsdorff, D. Bimberg, 11th International Conference on Indium Phosphide and Related Materials, Davos, May 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔