(3.238.98.214) 您好!臺灣時間:2021/05/08 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張書豪
研究生(外文):Hsu-Hao Chang
論文名稱:頻率可調之側向入薄膜式兆赫波發射器
論文名稱(外文):Frequency-tunable Edge-coupled Membrane Terahertz Photonic Transmitters
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:77
中文關鍵詞:兆赫波發射器
外文關鍵詞:Photonic Transmitterterahertz
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著現在資訊流通量的大幅增加,資訊處理的速度由gigahertz往terahertz邁進已經儼然成為必然的趨勢。然而傳統的電子電路方式所產生的信號在一、二百gigahertz時便會因嚴重的RC delay而遭遇瓶頸,所以如果要以此方式朝terahertz元件發展勢必將遭遇到很大的困難,因此我們便設計了光電轉換式的兆赫波元件。
光電轉換式的兆赫波元件具有許多的優點,例如可室溫操作、發射出的操作頻率具有可調性以及容易與其他半導體元件整合等等。因此我們在此論文中提出並展示了一種側向入射薄膜式兆赫波發射器。它是利用一個金屬-半導體-金屬行波式光偵測器和一個由共平面波導饋入之開槽天線所組成;由於我們所設計的金屬-半導體-金屬行波式光偵測器具有寬頻高效率的優點,因此我們可以用一個在時間上具有調制信號的光脈衝來激發兆赫波發射器,並且以熱輻射偵測器來偵測由兆赫波發射器所發射出的兆赫波功率大小。在頻率為404.5GHz的激發下,我們的兆赫波發射器有著極高的光電轉換效率(0.567%)以及量子轉換效率(526%)。並且利用Febry-Perot filter,我們可以得知我們的兆赫波發射器所輻射出來的兆赫波頻譜特性,並且對於影響元件頻寬的變因也做了初步的討論;而這也意味著面對著將來各式各樣的兆赫波應用層面,我們可以藉由我們對於元件頻譜特性的了解來設計以及控制元件的頻譜響應,進而來達成特定實驗目的。
在此論文中,我們使用了高速光偵測器以及薄膜側向入射式的架構,並且配合開槽天線設計,使得我們所設計出的兆赫波輻射器不但具有頻率可調的特性外,更比其他的兆赫波元件具有和其他半導體元件整合的優勢,相信這對未來的資訊處理以及生物影像等等的兆赫波應用層面上,會帶來更大的便利與可能性。
With the great increase in the amount of the application data, it is clear that the in crease in the data processing speed is necessary. However, the operation speed of the devices fabricated by traditional electrical circuit designs would suffer a bottleneck due to the serious RC time delay when the operation frequency is around hundreds of gigahertz. It will be very hard to make the devices operating at the terahertz regime by the traditional electrical circuit designs. Therefore we design the terahertz photonic transmitters.
A terahertz photonic transmitter is a kind of terahertz emitter with the advantages of tunable operation frequency, room temperature operation, and ease of integrating with other semiconductor devices, such as semiconductor lasers and amplifiers… Therefore we propose and demonstrate a edged-coupled membrane terahertz photonic transmitter in this thesis. The edged-coupled membrane terahertz photonic transmitter consists of a metal-semiconductor-metal traveling-wave photodetector(MSM-TWPD) and a coplanar waveguide (CPW) fed slot antenna. Owing to the ultra-highspeed and high efficiency properties of the MSM-TWPD, we could use an optical pulse with a temporal modulation to excite the photonic transmitter and use a bolometer to detect the power of the radiated terahertz. The photonic transmitter exhibits a record high light-terahertz conversion efficiency of and the external quantum efficiency of 526% at 404.5GHz. By utilizing the Febry-Perot filter, we could get the information of the radiated terahertz wave and do some preliminary survey in the frequency response of the photonic transmitters. This implies the possibility of the design and control of the frequency response of the photonic transmitters in various terahertz applications to achieve certain specific experiments.
In this thesis, we adopt a highspeed photodetector and a slot antenna with a membrane and edge-coupled structure in the photonic transmitters to achieve the tunable operating frequency property and make it possible for our device to be integrated with other semiconductor devices, which would facilitate the terahertz applications in the data processing and biological imaging in the near future.
Chapter 1:Introduction 1
1.1 Terahertz radiation sources 1
1.2 Terahertz technology and the applications 3
1.3 The organization of the thesis 4

Chapter 2:The design of terahertz photonic transmitters 9
2.1 The design of coplanar waveguide 9
2.2 The design of Metal-semiconductor-metal traveling-wave photodetectors 13
2.3 The frequency response of the coplanar waveguide fed slot antenna 19

Chapter 3:The fabrication of photonic transmitters 25
3.1Sample introduction 25
3.2 Fabrication process 28

Chapter 4:The characteristics of the terahertz photonic transmitters
4.1 Dark current measurement of MBE annealed devices 41
4.2 The experiment setup 43
4.3 The response calibration of the bolometer 46
4.4 The characteristics of the photonic transmitters 49
4.4.1 The optical excitation dependency of the terahertz radiation 52
4.4.2 The bias dependency of the photocurrent and the terahertz radiation 56
4.4.3 The frequency response of the photonic transmitter 57

Chapter 5:Conclusions 74
5.1 Summary 74
5.2 Future work 75
[1.1] P. T. Lang, F. Sessler, U. Werling, and K. F. Renk, “Generation of widely tunable intense far-infrared radiation pulses by stimulated Raman transitions in methylfluoride gas,” Appl. Phys. Lett. vol. 55, pp.2576-2578, 1989.
[1.2] G. P. Williams, “FAR-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser,” Review of Scientific instruments vol. 73, pp. 1461-1463, 2002.
[1.3] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microwave Theory Tech. vol. 48, pp. 626-631, 2000.
[1.4] Y. P. Gousev, I. V. Altukhov, K. A. Korolev, V. P. Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. Chao, “Widely tunable continuous-wave THz laser,” Appl. Phys. Lett. vol. 75, pp.757-759, 1999.
[1.5] M. Reddy, S. C. Martin, A. C. Molnar, R. E. Muller, R. P. Smith, P. H. Siegel, M. J. Mondry, M. J. W. Rodwell, H. Kroemer, and S. J. Allen, Jr., “Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz,” IEEE Electron Device Lett. vol. 18, pp.218-221, 1997.
[1.6] R. Koebler, A. Tredicucci, F. Beltram, H. E. Linfield, G. Davies, and David A. Ritchie, “High-performance terahertz quantum cascade lasers,” Conference on Lasers and Electro-Optics, OSA Technical Digest, Baltimore, MD, paper CMC2, 2003.
[1.7] G. Scalari, L. Ajili, J. Faist, H. Beere, G. Davies, E. Linfield, and David Ritchie, “Far infrared quantum-cascade lasers based on a bound-to-continuum transition,” Conference on Lasers and Electro-Optics, OSA Technical Digest, Baltimore, MD, paper CMC4, 2003.
[1.8] L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E.
Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” IEEE Electronics letters vol. 38, pp. 1675-1676,2002
[1.9] V. M. Menon, W. D. Goodhue, A. S. Karakashian, A. Naweed, J. Plant, L. R. Ram-Mohan, A. Gatesman, V. Badami, and J. Waldman, “Dual-frequency quantum-cascade terahertz emitter,” Appl. Phys. Lett. vol. 80, pp.2454-2456, 2002.
[1.10] E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs”, Appl. Phys. Lett. vol. 66, pp.285-287, 1995.
[1.11] R. Adam, M. Mikulics, A. Förster, J. Schelten, M. Siegel, P. Kordo , X. Zheng, S. Wu, and R. Sobolewski, “Fabrication and subpicosecond optical response of low-temperature-grown GaAs freestanding photoconductive devices,” Appl. Phys. Lett. vol. 81, pp.3485-348, 2002.
[1.12] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. vol. 45, pp. 1301-1309, 1997.
[1.13] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. vol. 49, pp. 1032-1038, 2001.
[1.14] K. A. Mclntosh, , E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. vol. 69, pp.3632-3634, 1996.
[1.15] S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson, and A. C. Gossard, “A traveling-wave THz photomixer based on angle-tuned phase matching,” Appl. Phys. Lett. vol. 71, pp.2872-2874, 1999.
[1.16] A. Hirata and T. Nagatsurna, “120GHz millimeter-wave antenna for integrated photonic transmitter,” IEEE Electronics letters vol. 37, pp. 1460-1461, 2001.
[1.17] H. Ito, T. Furuta, Y. Hirota, T. Ishibashi, A. Hirata, T. Nagatsuma, H. Matsuo, T. Noguchi, and M. Ishiguro, “Photonic millimeter-wave emission at 300 GHz using an antenna-integrated uni-traveling-carrier photodiode,” IEEE Electronics letters vol. 38, pp. 989-990, 2002.
[1.18] A. Ueda, T. Noguchi, H. Iwashita, Y. Sekimoto, M. Ishiguro, S. Takano, T. Nagatsuma, H. Ito, A. Hirata, and T. Ishibashi, “W-band waveguide photomixer using a uni-traveling-carrier photodiode with 2-mW output,” IEEE Trans. Microwave Theory Tech. vol. 51, pp. 1455-1459, 2003.
[1.19] A. Hirata, T. Nagatsuma, R. Yano, H. Ito, T. Furuta, Y. Hirota, T. Ishibashi, H. Matsuo, A. Ueda, T. Noguchi, Y. Sekimoto, M. Ishiguro, and S. Matsuura, “Output power measurement of photonic millimetre-wave and sub-millimetre-wave emitter at 100-800 GHz,” IEEE Electronics letters vol. 38, pp.798-800, 2002.
[1.20] H. Ito, T. Nagatsuma, and T. Ishibashi, “Recent development on uni-traveling-carrier photodiodes and their applications,” Conference Proceeding of IEEE Lasers and Electro-Optics Society 2001 Annual Meeting San Diego, CA, vol. 1, pp.386-387, 2001.
[1.21] H. Ito, T. Furata, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” IEEE Electronics letters vol. 36, pp.1809-1810, 2000.
[2.1] J.-W. Shi, K.-G. Gan, Y.-H. Chen, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Ultrahigh-power-bandwidth product and nonlinear photo-conductance performances of low-temperature-grown GaAs based metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Tech. Lett. vol. 14, pp.1587-1589 , 2002.
[2.2] Jackson, R. W., “Coplanar waveguide vs. microstrip for millimeter wave integrated circuits,” 1986 IEEE-MTT-S International Microwave Symposium Digest 1986, pp.699-702.
[2.3] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip lines and slotlines,” Artech House, Boston London, 1996.
[2.4]S. Y. Chou and M. Y. Liu, “Nanoscale terahertz metal –semiconductor-metal photodetectors,” IEEE J. of Quantum Electronics, vol. 28, pp. 2358-2368, 1992.
[2.5]F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, ”Picosecond GaAs-based photoconductive optoelectronic detectors,” Appl. Phys. Lett., vol. 54, pp.890-892, 1989.
[2.6] Y. J. Chiu, S. B. Fleischer, and J. E. Bowers, “High-speed low-temperature-grown GaAs p-i-n traveling-wave photodetector,” IEEE Photon. Tech. Lett. vol. 10, pp.1012-1014, 1998.
[2.7] Y. J. Chiu, S. B. Fleischer, J. E. Bowers, A. C. Gossard, and U. K. Mishra, “High-power, high-speed, low-temperature-grown GaAs p-i-n traveling wave photodetector,” Conference on Lasers and Electro-Optics, OSA Technical Digest, San Francisco, CA, pp.501-502, 1998.
[2.8] J.-W. Shi, K.-G. Gang, Y.-J. Chiu, J. E. Bowers, and C.-K. Sun, “High power performance of ultrahigh bandwidth MSMTWPDs,” Conference Proceeding of IEEE Lasers and Electro-Optics Society 2001 Annual Meeting, San Diego, CA, vol. 2, pp.887-888, 2001.
[2.9] J.-W. Shi, C.-K. Sun, “Design and analysis of long-absorption length traveling-wave photodetector,” J. of Lightwave Techno., vol. 18, pp. 2176-2187,2000.
[2.10] J.-W. Shi and C.-K. Sun, “Design and Analysis of long-absorption length traveling-wave photodetector,” J. of Lightwave Techno. vol.18, pp.2176-2187, 2000.
[2.11] J.-W. Shi, Metal-semiconductor-metal traveling–wave photodetector, PhD thesis, Nation Taiwan University, Institute of Electro-Optical Engineering.
[2.12] Y. J. Chiu, Sub-terahertz traveling-wave low-temperature-grown GaAs P-I-N photodetector, PhD thesis, University of California, Santa Barbara, Department of Electrical and Computer Engineering.
[2.13] J.-W. Shi., C.-K. Sun, and Y.-J. Yang, “Metal-semiconductor-metal traveling-wave photodetectors,” Conference on Lasers and Electro-Optics, OSA Technical Digest, Baltimore, MD, pp.256-257, 1999.
[2.14] S. M. Sze, Physics of semiconductor devices, Wiley-Interscience, New York, 1969.
[3.1] S. Gupta., S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson et al., “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. vol. 59, pp.3276-3278, 1991.
[3.2] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in Ⅲ-Ⅴ semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE Journal of Quantum Electronics vol. 28, pp. 2464-2472, 1992.
[3.3] K. A. Mclntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. vol. 70, pp.354-356, 1997.
[4.1] E. R. Brown, F. W. Smith, and K. A. Mclntosh, “Coherent millimeter-wave generation by hetrodyne convrsion in low-temperature-grown GaAs photodetectors,” J. Appl. Phys. vol.73, pp.1480-1484, 1993.
[4.2] M. Y. Frankel, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs,” IEEE Trans. Electron Devices vol. 37, pp.2493-2498, 1990.
[4.3] A. Nahata and J. T. Yardley, “Free space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. vol. 75, pp.2524-2526, 1999.
[4.4] E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. vol. 66, pp.285-287, 1995
[4.5] K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. vol. 69, pp.3632-3634, 1996.
[4.6] S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microwave Theory Tech. vol. 45, pp.1301-1309, 1997.
[4.7] Peter R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. vol. 24, pp.255-260, 1988.
[4.8] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. vol. 45, pp.284-286, 1984.
[4.9] A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. vol. 64, pp.137-139, 1994.
[4.10] D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-circuit antennas,” Infrared and Millimeter Waves Conference Proceeding, vol. 10, 1983
[4.11] A. Hirata, N. Sahri, H. Ishii, K. Machida, S. Yagi, and T. Nagatsuma,, “Design and characterization of millimeter-wave antenna for integrated photonic transmitter,” Microwave Conference, 2000 Asia-Pacific, 3-6, Sydney, NSW, Australia, pp.70-73, 2000.
[4.12] A. W. Jackson, Low-temperature-grown GaAs photomixers designed for increased terahertz output power, PhD thesis, University of California, Santa Barbara, Materials Department.
[4.13] Eustace L. Dereniak and Devon G. Growe, Optical Radiation Detectors. New York, John Wiley & Sons, 1984.
[4.14] Y. J. Chiu, S. B. Fleischer, and J. E. Bowers, “High-speed low-temperature-grown GaAs p-i-n traveling-wave photodetector,” IEEE Photon. Techno. Lett. vol. 10, pp.1012-1014, 1998.
[4.15] J.-W. Shi, K.-G. Gan, Y.-J. Chiu, Y.-H. Chen, C.-K. Sun, Y.-J. Yang, and J. E. Bowers, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Techno. Lett. vol. 13, pp.623-625, 2001.
[4.16] Y. J. Chiu, S. B. Fleischer, J. E. Bowers, A. C. Gossard, and U. K. Mishra, “High-power, high-speed, low-temperature-grown GaAs p-i-n traveling-wave photodetector,” Conference on Lasers and Electro-Optics, OSA Technical Digest, San Francisco, CA, pp.501-502, 1998.
[4.17] J.-W. Shi, K.-G. Gang, Y.-J. Chiu, J. E. Bowers, and C.-K. Sun, “High power performance of ultrahigh bandwidth MSMTWPDs,” Conference Proceeding of IEEE Lasers and Electro-OpticsSociety 2001 Annual Meeting, San Diego, CA, vol. 2, pp.887-888, 2001.
[4.18] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech. vol. 47, pp.1265-1281, 1999.
[4.19] G..R. Davis, I. Furniss, W.A. Towison, P.A.R. Ade, R..J. Emery,W.M. Glencross, D.A. Naylor, T.J. Patrick, R.C. Sidey, and B.M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the long-wavelength spectrometer on the infared space obserbatory,” Appl. Optics vol. 34,pp.92-107, 1995.
[4.20] E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence oin a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. vol. 64, pp.3311-3313, 1994.
[4.21] K.-G. Gan, J.-W. Shi, Y.-H. Chen, C.-K. Sun, Y.-J. Chiu, and J. E. Bowers, “Ultrahigh power-bandwidth-product performance of low-temperature-grown GaAs based metal-semiconductor-metal traveling-wave photodetectors,” Appl. Phys. Lett. vol. 80 pp.4054-4056, 2002.
[4.22] M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55μm probe,” Appl. Phys. Lett. vol. 77, pp.1396-1398, 2000.
[4.23] U. D. Keil, J. M. Hvam, S. Tautz, S. U. Dankowski, P. Kiesel, and G. H. Döhler, “Femtosecond differential transmission measurements on low temperature GaAs metal-semiconductor-metal structures,” Appl. Phys. Lett. vol. 70 pp.72-74, 1997.
[4.24] N. Zamdmer, Qing Hu, K. A. Mclntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. vol. 75 pp.2313-2314, 1999.
[5.1] G..R. Davis, I. Furniss, W.A. Towison, P.A.R. Ade, R..J. Emery,W.M. Glencross, D.A. Naylor, T.J. Patrick, R.C. Sidey, and B.M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the long-wavelength spectrometer on the infared space obserbatory,” Appl. Optics vol. 34,pp.92-107, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔