(3.235.236.13) 您好!臺灣時間:2021/05/15 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭惟中
研究生(外文):Wei-Chung Cheng
論文名稱:利用浸溼干涉微影製作相位光罩與光學微影術中底部抗反射層研究
論文名稱(外文):Fabrication of Phase Masks by Immersion Interference Lithography and Study of Bottom Antireflective Coating Layers for Optical Lithography
指導教授:王倫
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:92
中文關鍵詞:浸濕干涉微影次微米光柵製作底部抗反射層
外文關鍵詞:BARCsub-micron grating fabricationimmersion lithography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,共包含三個部分的研究。第一部分是利用六甲基矽氧烷(HMDSO)薄膜作為深紫外光及真空紫外光微影術的光阻底部抗反射層(BARC)。我們利用HMDSO薄膜設計三層BARC可同時應用於157, 193和248奈米光學微影術及設計單層BARC可同時應用於浸濕193奈米光學微影術。利用電子迴旋加速進行電漿增強化學氣相沉積,藉由調整製程中氧氣和HMDSO的比例可得到適合HMDSO薄膜。研究中發現在增加底部抗反射層後均能改善基材反射造成的擺盪效應。
第二部分是自行干涉相位光罩製作。利用351奈米氬離子雷射干涉微影術曝光製作光柵圖案及以溼蝕刻溶液CR7將圖案轉移至鉻層,並利用活性離子蝕刻混合CHF3及O2氣體蝕刻石英基材。
其中我們利用干涉微影術製作應用於波長248奈米的相位光罩。利用最佳化的條件,我們可以得到8%以下零階繞射的次微米相位光罩,在相位光罩的應用上,利用具有週期是1.080微米及零階繞射為5%之最佳相位光罩,來製作布拉格光纖光柵,並測得穿透頻譜的共振波長為1.563微米且反射率為7dB。另外,吾人利用週期是0.44微米相位光罩亦可曝出週期減半之光阻圖案。另外我們利用浸濕干涉微影術製作應用於波長157奈米週期180奈米的相位光罩,在最佳化的製程條件下±1階繞射光對比於0階繞射光有最大光強度。相位光罩的應用上,藉由波長157奈米雷射照射可曝出週期減半之光阻圖案。藉此相位光罩可用於製作出點或坑洞的二維圖案及壓印微影母糢。第三部分我們研究在 波長193奈米浸濕干涉微影中氣泡的影響。


In this thesis, our study contains three parts. The first part is the study of utilizing hexamethyldisiloxane (HMDSO) film as the bottom antireflective coating (BARC) layer for deep ultraviolet (DUV) and vacuum ultraviolet (VUV) lithographies. We report a novel tri-layer bottom antireflective coating (BARC) design based on hexamethyldisiloxane (HMDSO) films working simultaneously at 157, 193 and 248nm wavelengths and a single-layer BARC film working in water at 193 nm wavelength. The required optical constant for each layer can be tuned by varying the gas flow rate ratio of oxygen to HMDSO in an electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) process The swing effect in the resist is experimentally shown to be reduced significantly by adding this BARC structure.
A novel method for producing durable fused silica self-interference phase mask is described in the second part. The grating pattern is formed into I line positive photoresist (EPG510, Everlight) by 351 nm Ar+ laser interference lithography exposure and is transferred to a thin chromium layer via wet etching solution CR7, then reactive ion etching in CHF3/O2 plasma is used to etch the fused silica substrate. For phase masks working in 248 nm wavelength can be generated by using interferometric lithography. The optimized fabrication process allows phase mask of sub-micron period, centimeter long, with the zero-order intensity suppressed down to 8%. For the demonstration of its practicality, one optimized phase mask with 1.08 μm period and 5% zero-order diffraction efficiency is shown capable of fabricating fiber Bragg gratings with 7 dB transmission loss at 1.563 μm wavelength. Furthermore, another 0.44 μm period phase mask is used to produce a photoresist pattern with halved period. For phase masks working in 157 nm wavelength can be made from modified fused silica with 180 nm period by using immersion interference photolithography. The fabrication process of the phase mask is optimized to generate the largest intensity ratio of diffracted ±1-order to zero-order. The phase mask is demonstrated to produce a photoresist pattern with halved period (90 nm) when illuminated with a laser of 157 nm wavelength. The phase masks are also capable of generating two-dimensional patterns of holes and dots and serving as molds for imprint applications. The third part of this thesis is the study of the bubble effect for 193 nm wavelength immersion interference lithography.


Contents
摘要...................................................Ⅰ
Abstract ..............................................Ⅱ
Contents ..............................................Ⅳ
List of Figures .......................................Ⅶ
List of Tables ......................................ⅩⅠ
Chaper 1 Introduction .................................1
1.1 Background ........................................1
1.2 Chapter Outlines ..................................4

Chapter 2 Bottom Antireflective Coating Layers for Deep and Vaccum Ultraviolet Optical Lithography ............8
2.1 Introduction ......................................8
2.2 A Tri-layer HMDSO Film as Bottom Antireflective Coating for DUV and VUV Lithography ...................9
2.3 HMDSO Films as Bottom Antireflective Coating for 193 nm Immersion Lithography .............................14
2.4 Summary ..........................................16

Chapter 3 Phase Masks Working in 248 and 157 nm Wavelength Fabricated by Interference Photolithography ..........26
3.1 Introduction .....................................26
3.2 Optimization Design of Phase Masks ...............26
3.3 Phase masks fabricated by interferometric lithography for working in 248nm wavelength ......................30
3.3.1 Introduction ...................................30
3.3.2 Processing of Phase Masks ......................31
3.3.3 Experiment Results .............................36
3.4 Phase masks working in 157 nm wavelength fabricated by immersion interference photolithography (IIPL) .......37
3.4.1 Introduction ...................................37
3.4.2 Processing of phase masks ......................39
3.4.3 Experiment Results .............................41
3.5 Application ......................................42
3.5.1 Fabrication of Fiber Bragg Gratings ............42
3.5.2 Sub-Quarter-Micron Grating Production for DFB and DBR Laser.............................................43
3.5.3 Application and Fabrication of 2D Nanostructure Pattern of Holes and Dots ............................45
3.5.4 Fabrication of Nanopattern by IIPL .............47
3.5.5 Fabrication of Mold by IIPL ....................47
3.6 Summary ......................................... 49

Chapter 4 Study of Bubble Effects in Immersion Interference Lithograhy ..............................70
4.1 Introduction......................................70
4.2 Optical diffraction of Bubble.....................71
4.3 Experiment Results................................73
4.4 Summary ..........................................75

Chapter 5 Conclusion .................................83

Acknowledgement.......................................85

References............................................86


1.Govond P. Agrawal, in Fiber-Optic Communications Systems, John Wiley & Sons, New York, 2002, pp. 92-106.
2.N. Chinone and M. Okai, in Semiconductor Lasers: Past, Present, and Future, G. P. Agrawal, Ed., AIP Press, Woodbury, NY, 1995, Chap. 2.
3.M. Switkes, R. R . Kunz, M. Rothschild, and R. F. Sinta, “Extending optics to 50 nm and beyond with immersion lithography,” J. Vac. Sci. Technol., B21(6), 2794 (2003).
4.Y. Sato, E. Shiobara, S. Miyoshi, M. Asano, H. Matsuyama, and Y. Onishi, “Novel antireflective layer using polysilane for deep ultraviolet lithography,” J. Vac. Sci. Technol., B17, 3398 (1999).
5.R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, etal., “A multiplayer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol., B14, 4229 (1996).
6.T. A. Brunner, ”Optimization of optical properties of resist processes,” proc. SPIE 1466, 297 (1991).
7.J. R. Sheats and B. W. Smith, “Microlithography Science and Technology,” (Marcel Dekker Inc. publication, New York, 1998).
8.J. Sturtevant and B. Roman, “Antireflection strategies for advanced photolithography,” Microlithography Word, 4, 13 (1995).
9.Y. Sato, E. Shiobara, S. Miyoshi, M. Asano, H. Matsuyama, and Y.Onishi, “Novel antireflective layer using polysilane for deep ultraviolet lithography,” J. Vac. Sci. Technol. B 17, 3398 (1999).
10.R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J.DeMarco, and C. S. Pai, “A multilayer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229 (1996).
11.R. R. Dammel and R. A. Norwood, Proc. SPIE 2724, 754 (1996).
12.M. Xu and T.-M. Ko, “Double-layer inorganic antireflective system for KrF lithography,” J. Vac. Sci. Technol. B 18, 127 (2000).
13.M. Op de Beeck, G. Vandenberghe, P. Jaenen, F. H. Zhang, C. Delvaux,I. V. Puyenbroeck, and K. Ronse, Microlithogr. World 7, 13 (1998).
14.H. L. Chen and L. A. Wang, “Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer lithography,” Appl. Opt., 38, pp. 4885-4890 (1999). C. H. Lin, L. A. Wang, and H. L. Chen, “Optimized bilayer hexamethyldisiloxane film as bottom antireflective coating for both KrF and ArF lithographies,” J. Vac. Sci. Technol. B 18, 3323 (2000).
15.L. A. Wang and H. L. Chen, “Multilayer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B17(6), 2772 (1999).
16.H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986).
17.C. A. Mack, “Antireflective coating,” Microlithography Word, 3, pp.29-30 (1997).
18.Y. Sato, E. Shiobara, S. Miyoshi, M. Asano, H. Matsuyama, and Y.Onishi, “Novel antireflective layer using polysilane for deep ultraviolet lithography,” J. Vac. Sci. Technol. B 17, 3398 (1999).
19.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, San Francisco, CA, 1968.
20.M. Tennant, T. L. Koch, P. P. Mulgrew, “Characterization of near-field holography grating masks for optoelectronics fabricated by electron beam lithography,” J. Vac. Sci. Technol. B 10(6) 2530 (1992).
21.M. G. Moharamand, T. K. Gaylord, J. Opt. Soc. Am. 72 1385 (1982).
22.O. Joubert, G. S. Oehrlein, and Y. Zhang, “Fluorocarbin high density plasma. V. Influence of aspect ratio on the each rate of silicon dioxide in an electron cyclotron resonance plasma,” J. Vac. Sci. Technol. A 12(3) 658 (1994).
23.E. Gogolides, P. Vauvert, and Y. Courtin, “SiO2 and Si etching in fluorocarbon plasma: a detail surface model coupled with a complete plasma and profile simulator,” Microelectronic Engineering 46, 311 (1999).
24.Gyeo-Re Lee, Sung-Wook Hwang, Jae-Ho Min, and Sang Heup Moon, “Characteristics of secondary etching of SiO2 by ions reflected from a primary SiO2 target in a CHF3 plasma,” J. Vac. Sci. Technol. A 21(2) 404 (2003).
25.J. R. Sheats and B. W. Smith, Microlithgraphy Science and Technology (Marcel Dekker, New York, 2000).
26.A. K. Bates et al, IBM J. Res. Dev. 45, 605 (2001).
27.K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Algert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10) 1035 (1990).
28.D. B. Lee, “Anisotropic Etching of Silicon,” J. Appl. Phys, Vol. 40, No. 11, 4569 (1969).
29.K. E. Bean, “Anisotropic Etching of Silicon,” IEEE Transactions on lectron Devices, Vol. ED-25, No. 10, 1185 (1978).
30.Won Mook Choi and O Ok Park, “A soft-impriny technique for submicron structure fabrication via situ polymerization,” Nanotechnology, 15, 135 (2004).
31.M. Switkes and M. Rothschild, “Bubbles in Immersion Lithography,” The 48th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, San Diego Marriott Hotel and Marina San Diego, California, June 1-4, 2004.
32.A. Kawai, H. Endo, M. Yamanaka, “Adhesion and Removal Control of Micro Bubbles for Immersion Lithography,” The 48th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, San Diego Marriott Hotel and Marina San Diego, California, June 1-4, 2004.
33.Soichi Owa, Hiroyuki Nagasaka, “Advantage and feasibility of immersion,” JM3, 3(1), 97 (2004).
34.Peigang Deng, Yi-Kuen Lee and Ping Cheng, “Micro bubble dynamics in DNA solutions,” Journal of Micromechanics and Microengineering, 14, 693 (2004).
35.Michael Yeung, “Simulation of Printability of Nano- and Micro-Bubles in Liquid Immersion Lithography,” 2nd Immersion Wokshop, July 11(2003).
36.P. L. Marston, “Light scattering from bubbles in water,” Ocean 89 Part 4, Acoust. Arct. Stud., 1186 (1989).
37.C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983.
38.Bruce W. Smith, A. Bourov, F. Cropanese, Y. Fan, H. Kang, N. Lafferty Satish Kandlikar, “ Microbuble Scattering and Imaging Effects at 193 nm,” 2nd Immersion Wokshop, July 11(2003).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top