(3.238.235.155) 您好!臺灣時間:2021/05/11 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳孟霞
研究生(外文):Mong-Hsia Chen
論文名稱:主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究
論文名稱(外文):Using Master Curve on the Sintering of Nanocrystalline Alumina and Titania Ceramic Powders
指導教授:鄧茂華鄧茂華引用關係
指導教授(外文):Mao-Hua Teng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:奈米二氧化鈦奈米氧化鋁主導曲線燒結
外文關鍵詞:nanocrystalline aluminamaster curvesinteringnanocrystalline titania
相關次數:
  • 被引用被引用:8
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
「主導曲線模型」為本人所屬研究團隊從一般動力學反應方程式所推導而得的一個數學模型,運用在數個領域,包括結晶動力學和化學反應動力學上,均能成它a描述反應中的過程變化。已完成之初期研究成果亦證實此模型能夠用來描述與預測微米級及次微米級陶瓷粉末之燒結緻密化過程。但是否能用來描述奈米陶瓷粉末之燒結,則尚未經過實驗工作檢驗。此外,由於奈米陶瓷粉末之燒結所牽涉到的機制遠較傳統陶瓷粉末(指微米級及次微米級陶瓷粉末)燒結複雜,釵h修改自傳統陶瓷燒結的模型均不能普適於奈米陶瓷燒結,因此若本研究工作能以實驗證明主導曲線模型可以用來定量描述奈米陶瓷燒結緻密化的過程,則不僅在奈米陶瓷之燒結實務上有所貢獻,更在基礎科學上有重要的突破。
本實驗共採用五種奈米陶瓷粉末作為測試材料,分別為:平均粒徑約50 nm的氧化鋁(ㄛ菗陞D)、約15 nm的氧化鋁(γ相)、約35 nm的二氧化鈦(rutile相為主)、約10 nm的二氧化鈦(anatase相)和約45 nm的二氧化鈦(anatase相為主)粉末。實驗設計以等升溫速率進行常壓燒結,燒結體則以阿基米得法量測其密度,並用XRD和SEM分析晶相變化與觀測其微構造。
由於奈米粒徑效應,欲燒結之奈米級初始粉末常常包含有亞穩定相的成分在內,則燒結過程中常會發生相變化。本實驗的分析結果可分為兩部分:(一)燒結過程中僅發生小部分相轉變,此種奈米陶瓷燒結緻密化行為具有清楚的主導曲線關係,其緻密化行為和升溫速率無關;(二)燒結過程中發生大量地相轉變,此種奈米陶瓷燒結會出現二階段的緻密化行為:第一階段應為相變所造成的體積收縮和擴散作用所造成的孔隙移除之緻密化結果,此階段的實驗數據無法擬合出一條唯一曲線,至於相變後正常燒結的第二階段則具有明確的主導曲線關係。
模型分析擬合所得的視燒結活化能,不論是奈米氧化鋁或奈米二氧化鈦,均高於傳統陶瓷燒結分析所得活化能值,尤其是當所燒結之初始奈米陶瓷粉末粒徑愈小時,燒結所得之活化能值就愈大。此結果不僅表示奈米粒徑陶瓷粉末燒結緻密化之不容易,也表示無法單純以傳統陶瓷燒結機制(如:晶界擴散或體擴散機制等)來解釋其燒結緻密化行為。至於此偏高之燒結視活化能值,推測是因為奈米陶瓷在燒結初期表面擴散作用耗掉了其燒結驅動能,使晶粒變形,黏成棒狀或長柱狀,導致不利於後續燒結之緻密化,因而提高了視活化能值。
“Master Curve Model” was originally derived from the general equation of kinetic reactions by our group. It can be used in several fields, including crystallization kinetics and chemical kinetics, to adequately describe the variations of each reaction systems. It has also been proved that the model can describe and predict the densification behaviors of micron- and submicron-sized ceramic sintering in our preliminary study earlier. But there are no any experimental evidence yet whether it can be used in the sintering of nanocrystalline ceramic powders. Furthermore, the sintering of nanocrystalline ceramic powders involves more complicated mechanisms than the sintering of conventional ceramic powders, so the conventional sintering models cannot be applied to the sintering of nanocrystalline ceramic powders. To date no practical model has been developed to describe the sintering of nanoceramics. This study explores the feasibility of using the master curve model to quantitatively describe the densification behaviors of nanocrystalline ceramic powders in sintering. We believe the results will contribute not only to the sintering practice in industry but also to the understanding of the basic science of sintering.
Five powders were used in this study. They are ?Al2O3 (average diameter~50 nm)、γ-Al2O3 (~15 nm)、rutile-TiO2 (~35 nm)、anatase-TiO2 (~10 nm) and Degussa P25-TiO2 (~45 nm). The sintering is conducted in air at designed heating paths. The densities of the sintered specimens are measured by the Archimedes method. The phases and microstructure of the samples are determined by XRD and SEM, respectively.
Because the particle size effect, the nanocrystalline ceramic powders usually contain metastable phases. Therefore, phase transformation may occur during sintering. I summarize the experimental results into two parts: (1) Only a small fraction of the powders experiences phase transformation during the sintering. In this case, the densification behaviors of the powders show a clear master curve relationship, which is independent of heating path. (2) A large fraction of the powders experiences phase transformation during the sintering. That is when an unmistakable two-stage densification behavior is observed. The 1st stage is the results of both the volume shrinkage due to the phase transformation and the elimination of porosity during the early period of the sintering. The data of this stage cannot be merged into a single curve. The 2nd stage is the results of the sintering after the phase transformation has been completed, and again we observe a clear master curve relationship.
The values of the apparent sintering activation energy, which were derived from both the alumina and the titania, are greater than that of the conventional ceramic powders. In particular, we find that the starting powders with a smaller size will give a relatively greater value. The relationship indicates not only the complexity in nanosintering, but also that we cannon use the conventional sintering mechanisms to explain the densification behaviors of nanoceramics. The higher values of the apparent sintering activation energy might due to the predominant surface diffusion during the early stage sintering of nanoceramics. The surface diffusion quickly consumes the sintering driving forces by the shape-change of the grains (into the shape of rod or column), which in term makes the densification process harder in the later sintering stage and effectively makes the sintering apparent activation energies higher than their conventional counterparts.
摘要 ………………..………..………………………………...........…...Ⅰ
Abstract .................................................................................Ⅲ
目錄 ……………………………………………………………………..……Ⅴ
圖目錄 …………………………………………………………………..Ⅶ
表目錄 ………………………………………………………………..……Ⅹ

第一章 序論 ……………………………………………………………...…1
1.1 前言 ……………………………………………………...…1
1.2 研究目的 ………………………………………………………...…2
第二章 文獻回顧 …………………………………………………...………3
2.1 奈米陶瓷粉末燒結製程 …..………………………………………3
2.1-1 粉末分散處理 ………………………………………………..3
2.1-2 增進生坯之初始密度 ………………………………………..5
2.1-3 添加燒結助劑或晶種 ………………………………………..6
2.1-4 高壓低溫燒結 ………………………………………………..8
2.1-5 二階段燒結法 ……………………………………………….12
2.2 奈米陶瓷粉末燒結模型 …………………………………………14
2.2-1 燒結機制 ……………………………………………………14
2.2-2 描述奈米陶瓷燒結緻密化的數學模型 ……...…………….15
2.3 主導曲線模型…………. …………………………………………19
2.3-1 主導曲線模型的理論推導 ………………………………....19
2.3-2 主導曲線與主導燒結曲線之比較 ………………………....21
2.4 奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結行為 …..…………..22
2.4-1 奈米氧化鋁陶瓷之燒結 ……………………………………...22
2.4-2 奈米二氧化鈦陶瓷之燒結 ………………………………….25
2.4-3 粒徑效應 …………………………………………………….27
第三章 實驗步驟與分析方法 ……………………………………....…….28
3.1 粉末準備 ………………………………………….………………29
3.2 生坯成型 ………………………………………….………………31
3.3 燒結實驗 ………………………………………….………………34
3.4 密度量測 ………………………………………….………………36
3.5 主導曲線模型分析 ……………………………….………………37
3.6 微構造觀察 ……………………………………….………………38
第四章 結果與討論 ………………………………………………………39
4.1 奈米陶瓷粉末定性結果 ………………………….………………39
4.2 實驗誤差對主導曲線之影響 …………………….………………44
4.2-1 相對密度誤差對主導曲線之影響 …………..……….………44
4.2-2 溫度誤差對主導曲線之影響 ………………...………………45
4.3 主導曲線分析與預測試驗之結果 ………………………………48
4.3-1 α-Al2O3 …………………………………….………………48
4.3-2 γ-Al2O3 …………………………………….………………54
4.3-3 P25-TiO2 …………………………………..………………56
4.3-4 R-TiO2 ……………...……………………..………………61
4.3-5 A-TiO2 ………………..……………………..…………….65
4.4 主導曲線對奈米陶瓷粉末燒結的描述能力…………...…………. 68
4.5 燒結視活化能值之比較…………………………….………….…69
第五章 結論 …………………………………………………………72
參考文獻 ……………………………………………….………………74
附錄目錄 ………………………………………….…….………………80
附錄A 主導燒結曲線模型之理論推導 ….……….………………….81
附錄B 擬合S形曲線之數學方程式 …..……………………………83
附錄C 奈米陶瓷燒結之實驗數據 ………..………………………….84
1.I. –W. Chen and A. –X. Liang, “Development of Superplastic Structural Ceramics,” Journal of American Ceramic Society, 73 [9], 2585-2609 (1990).
2.K. A. Padmanabhan, “Mechanical properties of nanostructured materials,” Materials Science and Engineering, A304-306, 200-205 (2001).
3.G. Boschloo and D. Fitzmaurice, “Spectroelectrochemical Investigation of Surface in Nanostructured TiO2 Electrodes,” Journal of Physical Chemistry, B103, 2228-2231 (1999).
4.J. R. Groza, “Nanosintering,” NanoStructured Materials, 12, 987–992 (1999).
5.M. J. Mayo, “Processing of Nanocrystalline Ceramics from Ultrafine Particles,” International Materials Reviews, 41 [3], 85-115 (1996).
6.M.Seipenbusch, S. Froeschke, A. P. Weber and G. Kasper, “Investigations on the Fracturing of Nanoparticle Agglomerates — First Results,” Journal of Process Mechanical Engineering, 216, 219-225 (2002).
7.R. M. German, Chap. 6, in Sintering Theory and Practices, John Wiley and Sons, Inc., New York, 225-312 (1996).
8.P. –L. Chen and I. –W. Chen, “Sintering of Fine Oxide Powders:Ⅱ, Sintering Mechanisms,” Journal of American Ceramic Society, 80 [3], 637-645 (1997).
9.H. G. Kim and K. T. Kim, “Densification Behavior of Nanocrystalline Titania Powder Compact under High Temperature,” Acta Materialia, 47 [13], 3561-3570 (1999).
10.梁家豪,三種分析反應動力學及燒結資料的新方法。國立台灣大學地質科學系研究所碩士論文,共159頁 (2003)。
11.J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,” in Advances in Ceramics, Forming of Ceramics 9, ed. J. A. Mangels and G. L. Messing, American Ceramic Society, Columbus, OH, 67-75 (1984).
12.D. Lance, F. Valdivieso and P. Goeuriot, “Correlation between Densification Rate and Microstructural Evolution for Pure Alpha Alumina,” Journal of the European Ceramic Society, 24, 2749-2761 (2004).
13.G. R. Karagedov and N. Z. Lyakhov, “Preparation and Sintering of Nanosized -Al2O3 Powder,” NanoStructured Materials, 11 [5], 559-572 (1999).
14.J. A. Lewis, “Colloidal Processing of Ceramics,” Journal of American Ceramic Society, 83 [10], 2341-2359 (2000).
15.M. J. Mayo, “Synthesis and Applications of Nanocrystalline Ceramics,” Materials Design, 14 [6], 323-329 (1993).
16.W. Li and L. Gao, “Compacting and Sintering Behavior of Nano ZrO2 Powders,” Scripta Materials, 44, 2269-2272 (2001).
17.G. Skandan, “Processing of Nanostructured Zirconia Ceramics,” NanoStructured Materials, 5 [2], 111-126 (1995).
18.C. Bossel, J. Dutta, R. Houriet, J. Hilborn and H. Hofmann, “Processing of Nano-Scaled Silicon Powders to Prepare Slip Cast Structural Ceramics,” Materials Science and Engineering, A204, 107-112 (1995).
19.E. J. Gonzalez, B. Hockey and G. J. Piermarini, “High Pressure Compaction and Sintering of Nano-Size γ-Al2O3 Powder,” Materials and Manufacturing Processes, 11 [6], 951-967 (1996).
20.J. –P. Ahn, J.-K. Park and H. –W. Lee, “Effect of Compact Structures on the Phase Transition, Subsequent Densification and Microstructure Evolution Kinetics during Sintering of Ultrafine Gamma Alumina Powder,” NanoStructured Materials, 11 [1], 133-140 (1999).
21.L. Gao, W. Li, H. Z. Wang, J. X. Zhou, Z. J. Chao and Q. Z. Zai, “Fabrication of Nano Y-TZP Materials by Superhigh Pressure Compaction,” Journal of the European Ceramic Society, 21, 135-138 (2001).
22.H. Hahn, J. Logas and R. S. Averback, “Sintering Characteristics of Nanocrystalline TiO2,” Journal of Materials Research, 5 [3], 609-614 (1990).
23.S. J. Bennison and M. P. Harmer, “A History of the Role of MgO in the Sintering α-Al2O3,” in Sintering of Advanced Ceramics, ed. C. A. Handwerker, J. E. Blendell and W. Kaysser, American Ceramic Society, Westerville, Ohio (1990).
24.M. N. Rahaman and Y. C. Zhou, “Effect of Solid Solution Additives on the Sintering of Ultrafine CeO2 Powders,” Journal of the European Ceramic Society, 15, 939-950 (1995).
25.Y. –F. Hsu, S. –F. Wang and T. –W. Cheng, “Effect of Additives on the Densification and Microstructural Evolution of Fine θ-Al2O3 Powder,” Materials Science and Engineering, A362, 300-308 (2003).
26.H.C. Kao, W. J. Wei and C. Y. Huang, “Two-Stage Densification of Ultrafine Transition Alumina Seeded with α-Phase Particulates,” Journal of Ceramic Processing Research, 4 [1], 34-41 (2003).
27.C. S. Nordahl and G. L. Messing, “Sintering of α-Al2O3-Seeded Nanocrystalline γ-Al2O3 Powders,” Journal of the European Ceramic Society, 22, 415-422 (2002).
28.S. Kwon and G. L. Messing, “Sintering of Mixtures of Seeded Boehmite and Ultrafine -Alumina,” Journal of American Ceramic Society, 83 [1], 82-88 (2000).
29.S. -C. Liao, Y. –J. Chen, W. E. Mayo and B. H. Kear, “Transformation- Assisted Consolidation of Bulk Nanocrystalline TiO2,” Nanostructured Materials, 11 [4], 553-557 (1999).
30.S. -C. Liao, K. D. Pae and W. E. Mayo, “High Pressure and Low Temperature Sintering of Bulk Nanocrystalline TiO2,” Materials Science and Engineering, A204, 152-159 (1995).
31.S. -C. Liao, W. E. Mayo and K. D. Pae, “Theory of High Pressure / Low Temperature Sintering of Bulk Nanocrystalline TiO2,” Acta Materialia, 45 [10], 4027-4040 (1997).
32.S. -C. Liao, K. D. Pae and W. E. Mayo, “Retention of Nanoscale Grain Size in Bulk Sintered Materials via A Pressure-Induced Phase Transformation,” Nanostructured Materials, 8 [6], 645-656 (1997).
33.S. -C. Liao, K. D. Pae and W. E. Mayo, “The Effect of High Pressure on Phase Transformation of Nanocrystalline TiO2 during Sintering,” Nanostructured Materials, 5 [3], 319-325 (1995).
34.S. -C. Liao, Y. –J. Chen, B. H. Kear and W. E. Mayo, “High Pressure / Low Temperature Sintering of Nanocrystalline Alumina,” Nanostructured Materials, 10 [6], 1063-1079 (1998).
35.D. William and Jr. Callister, “The Kinetics of Phase Transformation,” in Materials Science and Engineering An Introduction, ed. 6th, Wiley, Inc.,300-301 (2003).
36.D. A. Porter and K.E. Easterling, “Diffusional Transformation in Solids,” in Phase Transformations in Metals and Alloys, Nelson Thornes Ltd, 264-290 (1992).
37.I. –W. Chen and X. -H. Wang, “Sintering Dense Nanocrystalline Ceramics without Final-stage Grain Growth,” Nature, 404, 168-169 (2000).
38.M. Winterer, “Chap. 4 Processing and Microstructure,” in Nanocrystalline Ceramics Synthesis and Structure, ed. R. Hull, R. M. Osgood and J. Parisi, Springer, 93-96 (2002).
39.J. R. Groza and R. J. Dowding, “Nanoparticulate Materials Densification,” NanoStructured Materials, 7 [7], 749-768 (1996).
40.Y. Yao and A. R. Thölén, “Adhesion Between Nanoparticles,” NanoStructured Materials, 12, 661-664 (1999).
41.M. H. Teng, Chap. 2, in Initial Stage Sintering of Ultrafine Alumina Particles, 5-10 (1992).
42.T. Seto, M. Shimada and K. Okuyama, “Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method,” Aerosol Science and Technology, 23, 183-200 (1995).
43.R. M. German, in Sintering theory and practice, Wiley, New York (1996).
44.A. C. F. Cocks, “The Structure of Constitutive Laws for The Sintering of Fine Grained Materials,” Acta metallurgica et materialia, 42 [7], 2191-2210 (1994).
45.P. –L. Chen and I. –W. Chen, “Sintering of Fine Oxide Powders:Ⅰ, Microstructural Evolution,” Journal of American Ceramic Society, 79 [12], 3129-3141 (1996).
46.A. P. Hynes, R. H. Doremus and R. W. Siegel, “Sintering and Characterization of Nanophase Zinc Oxide,” Journal of American Ceramic Society, 85 [8], 1979-1987 (2002).
47.H. Su and D. L. Johnson, “Master Sintering Curve: a Practical Approach to Sintering,” Journal of American Ceramic Society, 79 [12], 3211-3217 (1996).
48.J. D. Hansen, R. P. Rusin, M. H. Teng and D. L. Johnson, “Combined Stage Sintering Model,” Journal of American Ceramic Society, 75 [5], 1129-1135 (1992).
49.W. H. Gitzen, “Preparation of Alumina Phases,” in Alumina as A Ceramic Material, The American Ceramic Society, Inc., Columbus, 7-28 (1970).
50.J. G. Li and X. Sun, “Synthesis and Sintering Behavior of A Nanocrystalline α-Alumina Powder,” Acta Materials, 48, 3103-3112 (2000).
51.E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser, in Phase Diagrams For Ceramics, American Ceramic Society, Inc., 76, 4150-4999 (1975).
52.Y. Hu, H. L. Tsai and C. –L. Huang, “Phase Transformation of Precipitated TiO2 Nanoparticles,” Materials Science and Engineering, A344, 209-214 (2003).
53.P. I. Gouma and M. J. Mills, “Anatase-Rutile Transformation in Titania Powders,” Journal of American Ceramic Society, 84 [3], 619-622 (2001).
54.B. Y. Wei, H. M. Lin C. C. Kao and A. K. Li, “Effect of Calcination on Potocatalytic Activity of TiO2 Nanopowders,” Journal of Materials and Engineering, 35 [1], 64-69 (2003).
55.R. W. Siegel, S. Ramasamy, H. Hahn, Z. –Q. Li and T. Lu, “Synthesis, Characterization, and Properties of Nanophase TiO2,” Journal of Materials Research, 3 [6], 1367-1372 (1988).
56.M. Stech, P. Reynders and J. Rödel, “Constrained Film Sintering of Nanocrystalline TiO2,” Journal of American Ceramic Society, 83 [8], 1889-1896 (2000).
57.J. –P. Ahn, J.-K. Park and G. Kim, “ Effect of Compact Density on Phase Transition Kinetics from Anatase Phase to Rutile Phase during Sintering of Ultrafine Titania Powder Compacts,” NanoStructured Materials, 10 [6], 1087-1096 (1998).
58.Y. I. Lee, J. –H. Lee, S. –H. Hong and D. –Y. Kim, “Preparation of Nanostructured TiO2 Ceramics by Spark Plasma Sintering,” Materials Research Bulletin, 38, 925-930 (2003).
59.A. A. Gribb and J. F. Banfifld, “Particle Size Effects on Transformation Kinetics and Phase Stability in Nanocrystalline TiO2,” American Mineralogist, 82, 717-728 (1997).
60.H. –L. Wen, Y. –Y. Chen, F. –S. Yen and C. –Y. Huang, “Size Characterization of θ- And α-Al2O3 Crystallites During Phase Transformation,” NanoStructured Materials, 11 [1], 89-101 (1999).
61.R. A. Spurr and H. Myers, Anal. Che, 31, 2481 (1978).
62.“Standard Test Method for Water Adsorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products,” ASTM Designation C373-88, American Society of Testing and Method, Philadephia, PA (1994).
63.M. H. Teng, Y. C. Lai and Y. T. Chen, “A Computer Program of Master Sintering Curve Model to Accurately Predict Sintering Results,” Western Pacific Earth Science, 2 [2], 171-180 (2002).
64.V. I. Lapshin and V. K. Yarmarkin, “Kinetics and Mechanisms of the Solid-State Sintering of Alkaline-Earth Titanates,” in Science of Sintering, ed. D. P. Uskoković et al., Plenum Press, New York, 537-543 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔