(3.237.48.165) 您好!臺灣時間:2021/05/09 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭彥威
研究生(外文):Yen-Wei Cheng
論文名稱:添加銀對鈦酸鋇燒結行為微結構及介電性質之影響
論文名稱(外文):The Effect of Silver on the Microstructure and Dielectric Property of BaTiO3
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:76
中文關鍵詞:鋇鈦比微結構鈦酸鋇介電燒結
外文關鍵詞:sinteringBa/Ti ratiosilverdielectricbarium titanatenon-stoichiometrymicrostructure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以起始粉末BaCO3及TiO2,利用固態反應法 (solid-state reaction),在1100℃溫度持溫2小時煆燒,製備不同鋇鈦比(Ba/Ti ratio)的鈦酸鋇粉末.所得的粉末再以不同的持溫溫度,於空氣中燒結,探討不同鋇鈦比在燒結過程中的燒結行為與微結構的變化,與密度、介電常數的影響.本實驗進而在不同的鋇鈦比鈦酸鋇中添加不同的重量百分率的銀,在不同持溫溫度燒結,探討銀對不同鋇鈦比的鈦酸鋇,與密度、微結構、電性的影響.
  對於不同的鋇鈦比的鈦酸鋇在空氣中燒結時,在鋇多的系統,發現中間相Ba2TiO4的存在.微結構的晶粒呈現正常的成長,但不易緻密.在鈦多的系統,燒結溫度超過共晶溫度(1320℃)之後,試樣發現有Ba6Ti17O40的高溫液相生成,晶粒呈現異常成長,但因液相產生有較佳的緻密化行為,但由於高溫液相會殘存在晶界,使介電常數降低.
  在不同鋇鈦比的鈦酸鋇中添加銀系統中,微量的銀會使晶粒成長,使晶粒尺寸變大;但當含量超過固溶度之後,會阻止晶粒粗化,得到較小的晶粒尺寸.由於銀離子和鋇離子的半徑尺寸相似,在晶格中會發生置換的反應現象,當銀的添加量不同,微結構、燒結行為、密度及電性都會受到影響.而銀在鈦酸鋇的固溶度,因鋇鈦比的不同表現也不同.
In the present study, a solid-state reaction technique is used to prepare the barium titanate powders with different Ba/Ti ratios. The calcination was carried out at 1100℃ for 2h. The non-stoichiometric BaTiO3 samples were sintered at various temperatures in air. The effects of Ba/Ti ratio on the sintering behavior, microstructures and dielectric properties are investigated. In the present study, Ag is doped into the non-stoichiometric BaTiO3. The Ag-containing BaTiO3 was sintered in air at different temperature. The influence of the Ag powders on the dielectric properties and microstructure of the non-stoichiometric BaTiO3 is investigated.
In the Ba-rich system, a small amount of Ba2TiO4 is found in the Ba-rich system. The presence of Ba2TiO4 phase inhibits densification, the grains exhibit equiaxis shape. However, the density of the Ba-rich specimen is low. In the Ti-rich system, Ba6Ti17O4 phase is found, indicating the presence of a liquid phase during sintering while the temperature is higher than the eutectic temperature (1320℃). The presence of the liquid phase enhances the densification, and abnormal grains are also formed. The dielectric constant of the Ti-rich BaTiO3 is thus degraded.
While doping silver into BaTiO3, a small amount of silver can increase the amount of abnormal grain and its size. When the silver content is higher than the solubility, the silver inclusions can inhibit the coarsening of BaTiO3. There are some replacements of Ba2+ with Ag+. The dielectric constant and relative density depend strongly on silver content and sintering temperature above or below eutectic point. The Ag solubility in Ti-rich BaTiO3 is higher than that in Ba-rich BaTiO3.
Chapter 1 Introduction………………………………………………1

Chapter 2 Literature Survey………………………………………3
2-1 The Synthesis of Barium Titanate……………………………3
2-2 The Solid-State Reaction………………………………………4
2-2.1 The Purpose……………………………………………………4
2-2.2 The Reaction Mechanism During Calcination……………4
2-2.3 The Influence with A/B Ration on Barium Titanate……5
2-3 The Characteristics of Barium Titanate……………………9
2-4 The Microstructure of BaTiO3………………………………10
2-5 The Sintering Behavior of BaTiO3…………………………12
2-6 The Dielectrical Properties of BaTiO3……………………13
2-7 The Solubility of Additives in BaTiO3……………………14
2-8 Effect of Ag on BaTiO3………………………………………15
2-8.1 The Characteristics of Silver……………………………15
2-8.2 The Effect of the Ag on the perovskite structure…15
2-8.3 The Defect Chemistry of BaTiO3/Ag System……………16

Chapter 3 Experimental Procedures……………………………22
3-1 Preparation of BaTiO3 Powders………………………………22
3-1.1 The Phase Identification for Powders…………………22
3-1.2 Preparation of the Specimens……………………………22
3-1.2.1 Preparation of the Specimens for Electrical Properties Analysis…………………………………………………22
3-1.2.2 Preparation of the Specimens for Shrinking Properties Analysis…………………………………………………23
3-1.3 Phase Identification………………………………………23
3-1.4 Microstructure Observation………………………………23
3-1.5 The Density Measurement……………………………………24
3-1.5.1 Apparent Density……………………………………24
3-1.5.2 Relative Density………………………………………24
3-1.6 The Dielectric Constant……………………………………24
3-2 Preparation of BaTiO3/Ag Composite………………………27
3-2.1 Starting Materials…………………………………………27
3-2.2 Experimental Procedure……………………………………27
3-2.3 Preparation of the Sspecimens……………………………27
3-2.3.1 Preparation of the Specimens for Electrical Properties Analysis………………………………………………27
3-2.3.2 Preparation of the Specimens for Shrinking Properties Analysis…………………………………………………27
3-2.4 The Phase Identification for Powders…………………27
3-2.5 The Microstructure Observation…………………………27
3-2.6 The Measurement of the Density…………………………27
3-2.6.1 Apparent Density…………………………………………27
3-2.6.2 Theoretical Density……………………………………28
3-2.6.3 Relative Density………………………………………28
3-2.7 The Dielectric Constant Observation……………………28
3-2.8 Powder Observation.…………………………………………28
3-2.9 The Measurement of Solubility -The EPMA analysis…28

Chapter 4 Results and Discussion………………………………31
4-1 Thermal Analysis………………………………………………31
4-1.1 DSC Analysis…………………………………………………31
4-1.2 TGA Analysis…………………………………………………31
4-2 Phase Analysis…………………………………………………31
4-3 Particle Size Distribution…………………………………32
4-4 Phase Analysis of the Fired Specimens……………………32
4-5 Microstructure Observation…………………………………32
4-6 Density Measurement…………………………………………34
4-7 Densification Kinetics………………………………………34
4-8 Dielectric Properties…………………………………………35
4-9 Morphology of BaTiO3/Ag Powder……………………………53
4-10 Relatively Density of the Ag/ BaTiO3 Composite………53
4-11 The Ag/ BaTiO3 Composite Microstructure………………54
4-12 Dielectric Properties Ag/ BaTiO3…………………55
4-13 The Ag Solubility of Ag in BaTiO3 Analysis……………55

Chapter 5 Conclusions………………………………………………71

References……………………………………………………………72
1. E. Luybrechts, K. Ishizaki and M. Taikata, “Review-The positive temperature coefficient of resisteivity in barium titanate” J. Mat. Sci., 30 2463-2474, (1995).
2. H. A. Sauer and J. R. Fisher, “Processing of Positive Temperature Coefficient Thermistors”, J. Am. Ceram. Soc., 43 [9] 297-301(1960).
3. P. P. Phule, S. H. Risbud, “Review Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system”, 25 J. Mat. Sci. 1169-1183, (1990).
4.P.P. Phule and S. H. Risbud, “Low Temperature Synthesis and Dielectr- ic Properties of Ceramics Derived from amorphous Barium Titanate G- els and Crystalline Powders”, Materials Science and Engineering, B3 p 241-47(1989).
5.M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitors,” U. S. Pat. No. 3330697, July 11, 1967.
6.A. N. Christensen. Acta Chem. Scand. 24(1970).
7.J.Q. Eckert Jr., C.C Hung-Houston, B. L. Gersten, M.M. Lencka, R.E. Riman.,
“Kinetics and mechanisms of hydrothermal synthesis of barium titanate,” J. Am. Ceram. Soc. 79, 2929-39(1996).
8.Z. H. Michael, E, Andrew, J. Claudia, D. R. Rodeny, “Wet-chemical synthesis of monodispersed barium titanate particles hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3”Powder Technology. 3, 2-14(2000).
9. H. Yamamura et. al., Ceram. Int. 11,p17-22(1985).
10. D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher, “Defect Chemistry and Microstructure of Hydrothermal Barium Titanate,” J. Am. Ceram. Soc., 84 [1] 179-82(2001).
11. W. D. Kingery. H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramic”, 2nd edn, Wiley, New York(1976).
12. A. Amin, M. A. Spears and B. M. Kulwicki, “Reaction of anatase and rutile With Barium Carbonate”, 66 [10] J. Am. Ceram. Soc. 733-738 (1983).
13. Lisenlotte K. Templeton and Joseph A. Pask. “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2”, J. Am. Ceram. Soc., 42 [5] 212-216(1959).
14. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis reaction of metatitanate BaTiO3, Part 1 Effect of the gaseous atmosphere upon the thermal evolution of the system BaCO3-TiO2”, J. Mat. Sci. 18. 3041-3046 (1983).
15. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis reaction of metatitanate BaTiO3, Part 2 Study of solid-solid reaction interfaces”, J. Mat. Sci. 18 3543-3550 (1983).
16. Lisenlotte K. Templeton and Joseph A. Pask. “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2”, J. Am. Ceram. Soc., 42 [5] 212-216(1959).
17. P. P. Phule, S. H. Risbud, “Review Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system”, 25 J. Mat. Sci. 1169-1183, (1990).
18 Kirby, K. W. and Wechsler B. A., “Phase Relations in the Barium titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74, 1841-47 (1991)
19. H. M. O’Bryan and J. Thomson, “ Phase Equilibria in the TiO2-Rich Region of the System BaO-TiO2”, J. Am. Ceram. Soc., 57 [12] 522-526 (1974).
20.H. M. O’Bryan and J. Thomson, “Temperature-Dependent Phase Boundaries for BaTi4O9, Ba4Ti13O30, and Ba6Ti17O40.” J. Am. Ceram. Soc., 68 [2] C-70-C-72 (1985).
21.V.. Krasevec, M. Drofenik and D. Kolar, “Topotaxy between BaTiO3 and Ba6Ti17O40”, J. Am. Ceram. Soc., 70 [8] C-193-C-195 (1987).
22.O. Eibl, P. Pongratz and P. Skalicky, “Formation of (111) Twins in BaTiO3 Ceramics”, J. Am. Ceram. Soc., 70 [8] C-195-C-197 (1987).
23. Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3”, J. Am. Ceram. Soc., 68 [7] 372-376 (1985).
24.R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3”, J. Am. Ceram. Soc., 64 [8] 372-376 (1981).
25. F. Kulcsar, “A Microstructure Study of Barium Titanate Ceramics”, J. Am. Ceram. Soc., 39 [13] 13-19 (1959).
26. J. S. Choi, and H. G. Kim, “Influence of stoichiometry and impurity on the sintering behavior of barium titanate ceramics,.” J. Mat. Sci. 27 1285-1290 (1992).
27. D. F. K. Hennings, R. Janssen, and P. J. L. Reynen, “Control of liquid-enhanced Discontinuous grain growth in barium titanate.,” J. Am. Ceram. Soc. 70 [1] 23-27 (1987).
28. J. K. Lee and K. S. Hong, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001-2006 (2001).
29.Y.-M. Chiang, D.Bimie, III, and W. D. Kingery , Physical Ceramics- Principles for Ceramic Science and Engineering, John Wiley & Sons, New York, (1997).
30.H. T. Martirena and J. C. Burfoot, “Gran-Size Effect on Properties of Some Ferroelectric Ceramics, ” J. Phys., c7, 3182-92(1974)
31.G. Goodman, R. C. Buchanan, and T. G.. Reynolds, III, “Ceramic Capacitor Materials,” Chap. 2, in ceramic Materials for Electronics – Processing, Properties, and Applications, Second Editiion, edited by R. C. Buchanan, Marcel Dekker, New York, (1991).
32.W. R. Buessern, L. E. Cross and A. K. Goswami, “Phenomenological Theory of High Permittiviy in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc. 49 [1] 33-36 (1966).
33.W. R. Cook, Jr., “Domain Twinning in Barium Titanate Ceramics,” J. Am Ceram. Soc. 39 [1] 17-19 (1956).
34.F. Kulcsar, “A Microstructure Study of Barium Titanate Ceramics,” J. Am Ceram. Soc. 39 [1]13-17 (1956).
35.Cole, S. S. JR., “Oxidation and Reduction of Palladium in the Presence of Silver,” J. Am. Ceram. Soc. 68 [4] C-106-7 (1985).
36.V. J. Tennery and F. R. Anderson, “Examinationof the Surface and Domain Structure in Ceramic Titanate,” J. Appl Phys., 29 [5] 755-58 (1958).
37.M. Hillert, “On the Theory of Normal and Abnormal Grain Growth,” Acta Metall., 13 [3] 227-38 (1965).
38.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed., pp. 461-62, Wiley, New York, 1976.
39.Y. Matsuo and H. Sasaki, “Exaggerated Grain Growth in Liquid Phase Sintering of BaTiO3,” J. Am Ceram. Soc.-Discussion and Note, 54 [9]471 (1971).
40.H. M. O’Bryan, Jr. and J. Thomson, Jr., “Phase Equilibria in the TiO2-Rich Region of the System BaO-TiO2,” J. Am. Ceram. Soc. 57 [12] 522-26 (1974)
41.D. F. K. Hennings, R. Janssen and P. J. L. Reynen, “Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am Ceram. Soc. 70 [1] 23-27 (1987).
42.M. Kahn , “Influence of Grain Growth on Dielectric Properties of Nb-Doped BaTiO3,” J. Am Ceram. Soc. 54 [9] 455-57 (1971).
43.A. Yainaji, Y. Enomoto, K. Kinoshita, T. and Murakami, “Preparation, Characterization, and properties of Dy-Doped Small-Grained BaTiO3 Ceramics,” J. Am. Ceram. Soc. 60 [3-4] 97-101 (1977).
44.A. S. Shaikh and R. W. Vest, “Defect Structure and Dielectric Properties of Nd2O3-Modified BaTiO3,” J. Am. Ceram. Soc. 69 [9] 689-94 (1986).
45.M. H. Drofenik, “Grain Growth During Sintering of Donor-Doped BaTiO3,” J. Am Ceram. Soc. 69 [1] C-8-C-9 (1986).
46.T. M. Harkulich, J. Magder, M. S. Vukasovich, and R. J. Lockhart, “Ferroelectrics of Ultrafine Particle Size: II,” J. Am Ceram. Soc. 54 [11] 548-53 (1971).
47.N. M. Molokhia, M. A. A. Issa, and S. A. Nasser, “Dielectric and X-Ray Diffraction Studies of Braium Titanate Doped with Ytterbium,” J. Am Ceram. Soc. 67 [4] 289-97 (1984).
48.C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, and W. Huebner, “Structure Property Relationships in Core-Shell BaTiO3-LiF Ceramics,” J. Mater. Res. 8 [4] 871-79 (1993).
49.T. R. Armstrong and R. C. Buchanan, “Influence of Core-Shell Grains on the Internal Stress State and Permittiveity Response of Zirconia-Modified Braium Titanate,” J. Am Ceram. Soc. 73 [5] 1268-73 (1990).
50.T. R. Armstrong, L. E. Morgens, A. K. Maurice, R. C. and Buchanan, “Effect of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramic,” J. Am Ceram. Soc. 72 [4] 605-11 (1989)
51.H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structures in ZrO2-Modified BaTiO3 Ceramics,” J. Am Ceram. Soc. 73 [12] 3562-68 (1990)
52.Y. Park and S. A. Song, “Influence of Core-Shell Structured Grain on Dielectric Properties of Cerium-Modified Barium Titanate,” J. Mater. Sci. Vol. 6, 380-88 (1995).
53.B. S. Rawal, M. Kahn, and W. R. Buessern, “Grain Core-Grain Shell Structures in BaTiO3 Based Dielectrics,” in Advance in Ceramics, edited by L. M. Levinson (The American Ceramic Society, Westerville, OH, 1981), Vol. 1.
54.D. Hennings, and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” J. Am Ceram. Soc. 67 [4] 249-54 (1984).
55.L. A. Xue, “Thermodynamic Benefit of Abnormal Grain Growth in Pore Elimination During Sintering,” J. Am Ceram. Soc. 72 [8] 1536-37 (1989).
56.H. Schmelz, “Shrinkage and Initial Grain Growth in BaTiO3 Ceramic,” pp.203-07 in Material Science Monographs, Vol. 14. Edited by D. Kolars, S. Penjovnik and M. M. Ristic. Elsevier, New York, 1981.
57.Y. Enomoto and A. Yamaji, “Preparation of Uniformly Small-Grained BaTiO3,” Am Ceram. Soc. Bull. 60 [5] 566-70 (1981).
58.L. A. Xue, Y. Chen, E. Gillart, and R. J. Brook, “The Kinetics of Hot-Pressing for Undoped and Donor-Doped BaTiO3 Ceramics,” J. Mater. Sci. Vol. 25, 1423-28 (1990).
59.H. U. Anderson, “Initial Sintering of BaTiO3 Compacts,” J. Am Ceram. Soc. 48 [3] 118-21 (1965).
60.J. Nowotny and M. Rekas, “Defect Structure, Electrical Properties and Transport in Bariun Titanate. VII. Chemical Diffusion in Nb-Doped BaTiO3,” Ceram. Int., 20, 265-75 (1994).
61.J. N. Lin and L. Wu, “ Wetting Reaction Between Lithium Fluoride and Barium Titanate,” J. Am Ceram. Soc. 72 [9] 1709-12 (1989).
62.C. H. Wang, and W. Wu, “Lead Borate Glass-A New Sintering Agent For BaTiO3 Ceramics,” Jpn. J. Appl. Phys., 32, 2020-24 (1993).
63.G. Arlt, D. Hennings, and G. With, “Dielectric Properties of Fine-Grained Barium Titanate,” J. Appl. Phys., 58, 1619-25 (1985).
64.J. H. Hwang, M. Yasuoka, M. Sando, M. Toruyama, & Niihara K., “Fabrication, Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver Composites,” J. Am Ceram. Soc. 82 [9] 2417-22 (1999).
65.H. C. Lin, and A. M. Jackson, “Correlation of Silver Migration with Temperature-Humidity-Bias(THB) Failures in Multilayer Ceramic Capacitors,” IEEE Transactions on Components, Hybrids, And Manufacturing Technology, Vol. 12, No. 1, March 130-37 (1989).
66.H. Ikushima and S. Havakawa, “Electrical Properties of Ag-Doped Barium Titanate Ceramics.” Jpn J. Appl Phys. 4 [5] 328-36 (1965).
67.G. H. Maher, “Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramic,” J. Am Ceram. Soc. 66 [6] 408-13 (1983).
68.J. H. Hwang, K. Watari, M. Sando, M. Toriyama, and K. Niihara, “Low-Temperature Sinterina and High-Strength Pb(Zr, Ti)O3-Matrix Composites Incorporating Silver Particles,” J. Am Ceram. Soc. 80 [3] 791-93 (1997).
69.施劭儒, “添加銀、鈀及銀鈀合金對鈦酸鋇性質之影響,” 國立台灣大學材料科學與工程學研究所碩士論文,2000.
70.G. V. Lweis, C. R. A. Catlow and R. E. W. Casselton, “PCTR Effect in BaTiO3,” J. Am Ceram. Soc. 68 [68] 555-58 (1985)
71.T. Yamamoto, “Influence of Small Ba/Ti Non-stoichiometry on Grain Growth Behavior in Barium Titanate.,” Br. Ceram. Trans. 94 [5] (1995)
72.J. K. Lee, K. S. Hong, J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics” J. Am Ceram. Soc. 84 [9] 2001-6 (2001).
73.R. Z. Chen, X. Wang, Z. L. Gui, L. T. Li, “Effect of Silver Addition on the Dielectric Properties of Barium Titanate-Based X7R Ceramics” J. Am Ceram. Soc. 86 [6] 1022-24 (2003).
74.C. Y. Chen, W. H. Tuan, “Effect of Silver on the Sintering and Grain-Growth Behavior of Barium Titanate” J. Am Ceram. Soc. 83 [12] 2988-92 (2000).
75.J. H. Hwang and Y. H. Han, “Defect Chemistry of BaTiO3 under Non-stoichiometric Ba/Ti Ratio,” Electrochemistry, 68 [6] 423-26 (2000).
76.R. D. Shannon, “Recised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, ” Acta Crystallogr., A32 [5] 751 (1976).
77.A. B. Tiffany, P. C. David, “Effects of Silver on Barium Titanate as a Function of Stoichiometry” J. Am Ceram. Soc. 87 [5] 875-80 (2004).
78.郭寶聲, “不同鋇鈦比對鈦酸鋇燒結行為微結構及電性之研究,”國立台灣大學材料科學與工程學研究所碩士論文,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔