(3.238.173.209) 您好!臺灣時間:2021/05/16 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮義凱
研究生(外文):Yi-Kai Feng
論文名稱:蒙脫石對酵母菌反應機制及其高劑量下對大鼠急性毒理學與懷孕之影響
論文名稱(外文):The Effect on Yeast Growth, on Acute Toxicity and Teratogenesis of High Dose Purified Montmorillonite in Rats and Pregnant Rats
指導教授:李源弘
指導教授(外文):Yuan-Haun Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:蒙脫石胚胎形成受精卵著床蒙脫石/海藻酸鈉複合物麵包酵母72小時急性毒性測試
外文關鍵詞:Rats72 hours acute toxicological testsHematologyBiochemistryZygocyte implantBacteriostasisDose-response analysisembryo formationSaccharomyces cerevisiaemontmorillonite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前研究發現蒙脫石(Montmorillonite)可能具有對微生物抑制及促進植物生長之效果。延續過去以蒙脫石(Montmorillonite)進行作為癌症藥劑5-FU載體及取代性天然農藥之相關應用研究,本研究取定安全且不具致病性之麵包酵母(Saccharomyces cerevisiae)為對象來進行藥劑配方相關生物毒性之研究,以不同劑量之蒙脫石、蒙脫石-鐵氰化鉀與蒙脫石-鐵氰化鉀-海藻酸鈉下分別進行毒理分析。由於不同添加配方條件下,對菌體有生長加強或抑制之效果,是以經由『劑量-反應分析』(Dose-response Analysis)可決定出最佳蒙脫石-鐵氰化鉀-海藻酸鈉配方對於微生物生長之有效抑制劑量。另一方面,由於蒙脫石本身對於生物體是否具有毒性尚缺乏研究文獻,故利用實驗動物大鼠來做為研究對象,探討蒙脫石對大鼠七十二小時急性毒理學之影響。實驗結果發現,口服蒙脫石試驗組比口服磷酸緩衝溶液(PBS)控制組之大鼠Hb、Haematocrete、RBC counting有顯著性增加之差異 (p<0.05)。其它有MCV、MCH、MCHC;另外白血球計數(WBC Count)、其中Lymphocyte、Band cell、Segmented cell、Eosinophil、Basophil、Monocyte及Plt數目兩組間均無顯著性差異(p>0.05)。而靜脈注射蒙脫石試驗組與磷酸緩衝溶液(PBS)控制組大鼠之各項血液學均無顯著性差異(p>0.05)。血液化學分析結果:口服高劑量蒙脫石試驗組對於口服磷酸緩衝溶液(PBS)控制組其鈉(Na+)離子和氯(Cl-)離子有顯著性減少差異(p<0.05),對於鈣(Ca2+)離子則有極顯著性減少差異(p<0.01)。靜脈注射高劑量蒙脫石組與磷酸緩衝溶液(PBS)控制組比較:其氨基丙酸轉氨酶即ALT(SGPT)有顯著性增加之差異(P<0.05),而鉀(K+)離子更有極顯著之下降差異(p<0.01)。而採取靜脈注射高蒙脫石試驗組之大鼠組織之切片,結果發現心、肝、脾、肺、腎之病理組織切片檢查全無異常。故由實驗結果推測蒙脫石可能較不具有毒性,但由血液化學鈉(Na+)、鈣(Ca2+)離子下降結果推測服用高劑量蒙脫石可能對於大鼠之心臟與骨質疏鬆較不利。此外,再以實驗動物懷孕大鼠來做為研究對象,探討口服高劑量蒙脫石對於大鼠受精卵之著床與胚胎形成之影響。實驗結果發現口服高劑量蒙脫石試驗組之著床數與排卵數兩者間有顯著性減少差異(p<0.05),此結果亦顯示服用高劑量蒙脫石可能會對於大鼠之受精卵著床造成影響。探討對大鼠胚胎於器官形成(Organogenesis)期之影響試驗,實驗結果發現試驗組與控制組兩者間之存活胎仔平均體重與存活胎仔數目均無顯著性差異(p>0.05),且不會造成死亡和耗損胚胎,由實驗結果推測以高劑量蒙脫石當作藥物載體並不會對孕畜及鼠胚胎之形成造成影響。由實驗結果推論,蒙脫石對於生體之影響較低,具有很大潛力作為高安全性之藥物載體。
To continue the examine of using montmorillonite to be a anticancer drug carrier of 5-FU, and its application of the replacement in pharmacology; In this study, we used a safe and non-pathological microorganism, Saccharomyces cerevisiae, to be our experimental model administrated with different dose of montmorillonite, montmorillonite-K6Fe(CN)3, or montmorillonite-K6Fe(CN)3-sodium alginate to proceed some toxicological assays. As a result of different formulas of montmorillonite, it could either enhance or inhibit the growth of Saccharomyces cerevisiae; to prove this, we found that the best formula, montmorillonite-K6Fe (CN)3-sodium alginate which was based on the dose-response analysis, could effectively inhibit the growth of Saccharomyces cerevisiae at a appropriate dosage.
On the other hand, the chemical structure of montmorillonite has been studied extensively but it dose not understand completely, especially the toxicity of montmorillonite to creature is still unclear. In this study, we used rats to proceed in vivo animal experiments to examined the acute toxicological effects of montmorillonite within 72 hours. Experimental animals were administrated with 142.9 mg/Kg of montmorillonite solution, and intravenous injected the rats with 14.29 mg/Kg of montmorillonite solution, respectably. And, the vehicles were only treated with PBS buffer. Each group of experimental animals were eight rats. After drug treatment, we observed their clinical symptoms and mortal conditions and we also collected the blood samples of these rats to carrier out blood routine examination included CBC and biochemistry analysis. Moreover, we sacrificed these rats and then took their organs out for examinating histochemistry sections included heart, liver, spleen, lung and kidney. The data showed the rats treated with oral montmorillonite were significantly increasing in Hb, Haematocrete and RBC counting than those with oral PBS buffer (P<0.05). Hoverer, MCV, MCH, MCHC, WBC Count and WBC differentiation analysis were no difference between experimental animals and vehicles (P>0.05). The same result was reveled in each hematological analysis in the intravenous injected rats and vehicles (P>0.05). From the results of biochemistry analysis, there was a decrease in the level of plasma sodium and chloride (P<0.05) and a notable decrease in the plasma calcium (P<0.01) in oral montmorillonite rats than that in vehicles. On the contrary, those intravenous injected montmorillonite were compared to vehicles, we found that ALT (SGPT) was significantly increasing (P<0.05), and plasma potassium was extremely deceasing (P<0.01) than the normal control. It deserves to be mentioned that histochemical examinations were all normal indicating montmorillonite may without any toxicity, but it may not suitable for the patients who are with cardio-vesicular deceases.
From this study, it indicates montmorillonite is a safe drug of carrier and no toxicity itself not only in vitro but also in vivo tests. And, montmorillonite does not has any adverse effects on gestation rats and embryos; I infer that montmorillonite may become a potent and safe drug of carrier in medicine in the future. However, it is still indefinite about montmorillonite for realistic application in replacement of chemical pesticides in agriculture. Therefore, I plan to farm tests to spray the optimum formula of montmorillonite-K6Fe(CN) 3-sodium alginate onto Chinese yam to further investigate if it keeps blades verdant on the Chinese yam owing to its bacteriostasis.
中文摘要 Ⅰ
英文摘要 Ⅳ
目錄 Ⅵ
圖索引 Ⅹ
表索引 ⅩⅤⅠ
第一章、緒論 1
1.1 前言 1
1.2 研究目的 3
1.3 研究內容 10
第二章、理論基礎及文獻回顧 12
2.1 蒙脫石的結構與性質 12
2.1.1 蒙脫石之歷史由來 12
2.1.2 蒙脫石之製備與純化 13
2.1.3 蒙脫石晶格結構理論及礦物特性 14
2.1.4 蒙脫石之空間群及原子座標 19
2.1.5 蒙脫石特性之應用 21
2.1.5.1蒙脫石的工業利用特性 21
2.1.5.2蒙脫石對於美容方面之應用 21
2.1.5.3蒙脫石對於生物醫藥方面之應用 21
2.1.5.4蒙脫石對於環境保護之應用 22
2.2海藻酸鈉的來源、特性及應用 24
2.3 實驗微生物—麵包酵母菌(Saccharomyces cerevisiae) 26
2.3.1 麵包酵母之特性與文獻回顧 26
2.3.2 微生物—麵包酵母菌的吸附機制 30
2.3.3 微生物的生長模型 32
2.3.4 非結構化之生長模式 34
2.3.5 Probit model 之原理 35
2.4實驗動物―大白鼠 38
2.4.1 生物急性測試之特性 38
2.4.2 評估紅血球系之方法 39
2.4.2.1 血容比(hematocrit)、血紅素值(hemoglobin concentration)及紅血球總數(red blood cell count) 39
2.4.2.2 血紅素濃度 39
2.4.2.3 紅血球計數 40
2.4.3 懷孕大鼠之受精卵著床與致畸形性試驗 41
2.4.4 生物統計分析法 42
第三章、實驗設備與步驟 44
3.1 實驗儀器 44
3.2 實驗藥品 46
3.3 實驗方法及流程 47
3.3.1蒙脫石之純化 47
3.3.2 麵包酵母之培養 50
3.3.3蒙脫石/鐵氰化鉀對麵包酵母生長抑制實驗 51
3.3.4蒙脫石/海藻酸鈉/鐵氰化鉀對麵包酵母生長抑制實驗 54
3.3.5 高劑量蒙脫石對於Wistar大鼠之急性毒性實驗 54
3.3.6 高劑量蒙脫石對於懷孕大鼠毒理學之探討 55
3.3.6.1蒙脫石對於懷孕大鼠受精卵著床之影響 55
3.3.6.2蒙脫石對懷孕大鼠致畸形性試驗 56
第四章:結果與討論 58
4.1 蒙脫石之表面形貌與成份分析結果 58
4.2添加物對麵包酵母生長機制之影響 61
4.2.1麵包酵母菌於固定蒙脫石添加量及不同鐵氰化鉀之生長曲線與比生長速率 61
4.2.2劑量-響應分析(Dose-response Analysis) 68
4.3 大白鼠毒性測試結果 71
4.3.1高劑量蒙脫石對於生物體毒理性之探討 71
4.3.1.1 血液學結果分析 71
4.3.1.2 血液化學結果分析 78
4.3.1.3 臟器病理組織切片結果 84
4.3.2 高劑量蒙脫石對於懷孕大鼠毒理學之探討 90
4.3.2.1蒙脫石對懷孕大鼠受精卵著床之影響 90
4.3.2.2蒙脫石對懷孕大鼠致畸形性試驗 92
第五章、結論 103
第六章、未來之展望 106
參考文獻 109
中文參考文獻

1.吳文騰,《生物產業技術概論》,國立清華大學出版社,2003。
2.杜伯雄,〈海藻酸鈉/蒙脫石複合物之農業應用〉,《國立台灣大學碩士論文》,1999。
3.丁天佑,〈蒙脫石電化學行為與微生物生長抑制之相關性研究〉,《國立台灣大學碩士論文》,2002。
4.蔡幸霖,〈蒙脫石對微生物生長抑制之反應機制研究〉,《國立台灣大學碩士論文》,2002。
5.李英堂、汪美鳳、田淑艷,《應用礦物學》,科學出版社,1995。
6.皮振邦,《奈米蒙脫石之製備與應用》,中國地質大學,2002。
7.吳平霄、廖宗文,《蒙脫石層間域的性質及其環境意義》,中國華南農業大學資源環境學院,2000。
8.王國清,《澎潤土在藥學中的應用》,瀋陽藥科大學學報第5期第17卷,2000。
9.簡啟恆,〈純化蒙脫石做為5-FU藥物載體於大腸癌治療之應用〉,《國立台灣大學碩士論文》,2000。
10.王進琦,《基礎微生物學》,藝軒出版社,二版,台北,1989。
11.林耕年,《農用微生物學》,復文書局,新增修訂本,台北,p.128-134,1973。
12.蘇照堂,〈利用反應曲面法對Saccharomyces cerevisiae菌株在實驗培養基中生長控制的探討〉,《國立中興大學碩士論文》,1992。
13.沈永紹,《獸醫實驗診斷學提要》,華香園出版社,台北,1982。
14.郭宗甫、劉朝鑫, 〈Pyrimethamine對大鼠胚胎致畸形性之研究〉,《國立台灣大學農學院研究報告》,Vol 34:305-334,1994。
15.楊志良,《生物統計學新論》,增修二版,藝軒圖書出版社,台北,2003。
日文參考文獻

16.新崎盛敏、新崎輝子,《海藻的話(日)》,東海出版社,1997。
英文參考文獻

17.Kloprogge, J. T., Frost, R. L., Fry, R., “Infrared emission study of the thermal transformation mechanism of Al13-pillared clay,” Analyst, 124, p.381-384, 1999.
18.Ralph E. G., Clay Mineralogy, 2nd ed., McGraw-Hill, New York, p39-41, 1968.
19.Oya. A., Banse. T., Ohashi. F., Otani. S., “An antimicrobial and antifungal agent derived from montmorillonite,” Appl. Clay Sci. 6, p.135-142, 1991.
20.Droy-Lefaix MT, Drouet Y, Schatz B., “Sodium glycodcoxycholate and sprinability of gastrointestinal mucous:protective effect of smectite,” Gastroenterology, 88, Suppl 2: 1369∼1370, 1985.
21.Zvyagin B. B., Pinsker Z. G., Structure of Montmorillonite, C. R. Acad. Sci. U.R.S.S., 68, 65-67, p.505-508, 1949.
22.Charles E. Weaver, The chemistry of clay minerals, Oxford, New York, 1975.
23.Mering, J., Glaeser, R., “Cations enchangeables dans montmorillonite,” C. R. Bull, 5, p.61-72, 1953.
24.Ralph W. G., Wyckoff, Crystal Structures, 4, p.365-366, 1963.
25.Huaili, O., Quansheng, S., Shimin, Z., Bin, Z., Mingshu, Y., “Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites,” polymer, 44, p.7533-7538, 2003.
26.Yuichi, F., Kohei, U., “Adsorption of Pesticides and Their Biodegraded Products on Clay Minerals and Soils,” Journal of Health Science, 47, 4, p.429-432, 2001.
27.Daniel, G. S., Donald, L. S., “The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite,” Journal of Colloid Interface Science, 216, p.257-269, 1999.
28.Michael, H. B., Bart, B., “Modeling the sorption of Zn and Ni on Ca-montmorillonite,” Geochimica et Cosmochimica Acta, 63, 3/4, p.325-336, 1999.
29.Lozzi, I., Calamai, L., Fusi, P., Bosetto, M., Stotzky, G., “Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+:effects on enzymatic activity and microbial degradation,” Soil Biology & Biochemistry, 33, p.1021-1028, 2001.
30.Sannino, F., Filazzola, M. T., Violante, A., Gianfreda, L., “Fate of herbicides influence by biotic and abiotic interaction,” Chemosphere, 39, 2, p.333-341, 1999.
31.Michael, F. T., Stephen, G. O., Saccharomyces, Plenum Press, New York and London, p.213, 1991.
32.Rose, A. H., Harrison, J. S., The yeasts, 2nd ed, London, p.300, 1987.
33.Chen, B. Y., Vivek, P. U., Stephen, M. H., Henry, H. T., Dolloff, F. S., Rakesh, G., “Studies on biosorption of zinc(Ⅱ) and copper(Ⅱ) on Desulfovibrio desulfuricans,” International Biodeterioration & Biodegradation, 46, p.11-18, 2000.
34.Chang, J. S., Robin, L., Chang, C. C., “Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21,” Water Research, 31, 7, p.1651-1658, 1997.
35.Van, L., M. C. M., Lyklema, J., Norde, W., Zehnder, A. J. B., “Influence of Interfaces on Microbial Activity,” Microbiological Reviews, Mar., p.75-87, 1990.
36.Harvey, W. B., Douglas, S. C., Biochemical Engineering, New York, p.181-185, 1996.
37.Maria, C., Csaba, C., Microbiological examination of water and wastewater, p.184.
38.Chen, B.Y., Liu, H.L., Chen, Y.W., Cheng, Y.C., “Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1”, Process Biochemistry 39, p.735-745, 2004.
網站參考文獻

39.經濟部礦物局,http://www.mine.gov.tw/09/09_01/09_35.htm。
40.安麗日用品股份有限公司,http://www.amway.com.tw。
41.實驗動物資訊網,http://las.nhri.org.tw。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊