(3.238.99.243) 您好!臺灣時間:2021/05/15 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳明忠
研究生(外文):Ming-Chung Wu
論文名稱:鋅鈮系無線通訊用低溫燒結微波介電材料之研究
論文名稱(外文):Study on Zn-Nb Series Low Sintering Temperature Microwave Dielectric Material for Applications in Wireless Communication
指導教授:林唯芳林唯芳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:134
中文關鍵詞:Bi1.5Zn0.92Nb1.5O6.92微波介電性質低溫燒結共燒銀擴散Zn3Nb2O8
外文關鍵詞:Bi1.5Zn0.92Nb1.5O6.92silver migrationmicrowave dielectric propertylow sintering temperatureco-firedZn3Nb2O8
相關次數:
  • 被引用被引用:9
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,迅速發展的無線通訊系統滿足了個人通訊之需求。對於現今無線通訊元件的訴求是:價格低廉、小型化及多功能化。本論文的主要目的是開發可低溫燒結的微波陶瓷材料,同時可與低導電損失、價格較便宜的銀電極共燒。
本論文包含三個部分。本論文的第一部分,探討具高品質因子值的Zn3Nb2O8系列陶瓷其物理性質和微波介電性質,相對於純的Zn3Nb2O8要在1150℃下燒結緻密,添加銅鋇助燒結劑(BaCO3-CuO,以下簡稱BC)的3.0wt% BC-added Zn3Nb2O8和銅鉬助燒結劑(MoO3-CuO,以下簡稱MC)的3.0wt% MC-added Zn3Nb2O8,只需在950℃下就可以燒結緻密,且可獲得較佳的微波介電性質。關於銀電極和Zn3Nb2O8系列陶瓷共燒,並未發現新的晶相出現。利用EPMA做線掃瞄分析,Zn3Nb2O8和3.0wt% BC-added Zn3Nb2O8也沒有觀察到銀擴散,但是3.0wt% MC-added Zn3Nb2O8,卻發生輕微銀擴散,其應為MoO3和銀發生反應所造成的。
本論文的第二部分,探討具高介電常數的Bi1.5Zn0.92Nb1.5O6.92(BZN)系列陶瓷其物理性質和微波介電性質,相對於純的Bi1.5Zn0.92Nb1.5O6.92要在1050℃下燒結緻密,添加銅鋇助燒結劑的3.0wt% BC-added BZN只需在950℃下,而添加銅鉬助燒結劑的3.0wt% MC-added BZN在900℃就可以燒結緻密,且可以獲得較佳的微波介電性質。關於銀電極和BZN系列陶瓷共燒,並未發現新的晶相出現,但是利用EPMA做線掃瞄分析,都發現到銀擴散,其應為銀和BZN材料或助燒結劑相互反應所造成的。
最後一部分的研究,利用阻抗儀、網路分析儀和Fourier transform spectrometer研究Bi1.5Zn0.92Nb1.5O6.92的介電行為,Bi1.5Zn0.92Nb1.5O6.92會於低溫時發生介電鬆弛行為,可能是造成其低品質因子值的主要因素。
高介電常數的Bi1.5Zn0.92Nb1.5O6.92可以有效的縮小元件的尺寸,但其助燒結劑會和銀膠發生反應,而導致銀擴散現象,在材料應用前,必須先克服此問題。而3.0wt% BC-added Zn3Nb2O8可以在低溫燒結緻密,擁有高品質因子值特性,且無銀擴散的現象,具有在微波頻段應用的潛力。


Recently, wireless communication systems are growing rapidly to satisfy the personal communication requirements. Compact, small size, low cost, and multi-function are the major developing trends among these modern wireless communication devices. The objective of this thesis is to develop low sintering temperature microwave material which can be cofired with silver electrode.
This thesis consists of three parts. In the first part of the thesis, we investigated systematically the physical properties and microwave dielectric properties in respect to high quality factor value material, Zn3Nb2O8 with sintering aids. For examples of 3.0wt% BaCO3-CuO (BC) mixture added Zn3Nb2O8 and 3.0wt% MoO3-CuO mixture (MC) added Zn3Nb2O8 can be densified at 950℃ with good microwave dielectric properties. The interfacial behavior between Zn3Nb2O8 and silver electrode was investigated. The XRD studies showed no new crystalline phase was found after co-firing pure or doped Zn3Nb2O8 with silver. No migration of silver towards pure Zn3Nb2O8 was observed using electron probe X-Ray microanalyzer (EPMA). However, a slight migration of silver towards MC-added Zn3Nb2O8 was identified. The mechanism of the silver migration was believed to be resulted from the reaction between silver and MoO3.
In the second part of the thesis, we studied systematically the physical properties and microwave dielectric properties of high dielectric constant material, Bi1.5Zn0.92Nb1.5O6.92 (BZN). For example of 3wt% BC-added BZN and 3wt% MC-added BZN at 950℃ can be sintered with higher than 95% densitivity. The optimal amount of dopants is 3wt% of BaCO3-CuO or MoO3-CuO to achieve the best microwave dielectric properties. The dopant concentration was either lower or higher than 3.0wt% would detract the dielectric properties of BZN. The interfacial behavior between BZN series ceramics and silver electrode was investigated. The XRD result showed no new crystalline phase was found after co-firing BZN or doped BZN with silver. The migration of silver towards BZN-based ceramics was observed by EPMA. The mechanism of the silver migration was believed to be resulted from the interaction between silver and sintering aids or BZN material.
In the last part of the thesis, we have studied the dielectric behaviors of Bi1.5Zn0.92Nb1.5O6.92 in detail using impedance analyzer, network analyzer, and Fourier transformed infrared spectrometer. Bi1.5Zn0.92Nb1.5O6.92 exhibited low temperature dielectric relaxation behavior which caused the material to have low quality factor property.
The low sintering temperature 3.0wt% BC-added Zn3Nb2O8 ceramics has a potential for microwave filter applications.


摘要……………………………………………………………………Ⅱ
Abstract………………………………………………………………Ⅳ
第一章 前言……………………………………………………………1
第二章 文獻回顧與理論基礎…………………………………………3
2.1 微波介電陶瓷元件 ………………………………………………3
2.1.1 介電共振器 ……………………………………………………3
2.1.2 電容器 …………………………………………………………5
2.1.3 濾波器 …………………………………………………………7
2.2 介電原理與微波介電性質 ………………………………………8
2.2.1 介電原理 ………………………………………………………8
2.2.2 微波與材料的作用……………………………………………11
2.2.3 微波介電性質…………………………………………………12
2.3 微波介電性質量測………………………………………………19
2.3.1 圓柱型共振腔…………………………………………………19
2.3.2 平行板介電共振器……………………………………………21
2.3.3 空腔微擾動法…………………………………………………22
2.4 燒結理論…………………………………………………………24
2.4.1 固相燒結………………………………………………………24
2.4.2 液相燒結………………………………………………………28
2.5 鉍鈮系介電陶瓷材料……………………………………………31
2.6 鋅鈮系介電陶瓷材料……………………………………………33
2.7 鉍鋅鈮系介電陶瓷材料…………………………………………35
2.8 助燒結劑…………………………………………………………41
第三章 實驗 …………………………………………………………44
3.1 實驗藥品…………………………………………………………44
3.2 使用儀器…………………………………………………………45
3.3 量測方法…………………………………………………………48
3.4 實驗步驟…………………………………………………………50
3.4.1 Zn3Nb2O8系列實驗步驟………………………………………50
3.4.1.1 Zn3Nb2O8系列粉末製備與性質的鑑定……………………50
3.4.1.2 Zn3Nb2O8系列燒結後性質的鑑定…………………………50
3.4.1.3 Zn3Nb2O8系列與銀電極間擴散與化學反應性的研究……52
3.4.2 Bi1.5Zn0.92Nb1.5O6.92系列實驗步驟 ……………………54
3.4.2.1 Bi1.5Zn0.92Nb1.5O6.92系列粉末的製備與性質的鑑定.54
3.4.2.2 Bi1.5Zn0.92Nb1.5O6.92系列燒結後性質的鑑定 ………54
3.4.2.3 Bi1.5Zn0.92Nb1.5O6.92系列與銀電極間擴散與化學反應性的研究 ………………………………………………………………56
3.4.3 Bi1.5Zn0.92Nb1.5O6.92介電鬆弛研究 ……………………58
3.4.3.1 Bi1.5Zn0.92Nb1.5O6.92粉末的製備與性質的鑑定……58
3.4.3.2 Bi1.5Zn0.92Nb1.5O6.92介電鬆弛相關鑑定 ……………58
第四章 Zn3Nb2O8系列低溫燒結微波介電陶瓷材料之研究 ………60
4.1 研究摘要…………………………………………………………60
4.2 Zn3Nb2O8系列粉末基本性質……………………………………61
4.2.1 晶相鑑定………………………………………………………61
4.2.2 化學成分組成…………………………………………………62
4.2.3 粒徑與表面積…………………………………………………62
4.3 Zn3Nb2O8系列燒結後的性質測試………………………………63
4.3.1 Zn3Nb2O8系列的理論密度與燒結密度………………………63
4.3.1.1 Zn3Nb2O8的理論密度與燒結密度…………………………63
4.3.1.2 BC-added Zn3Nb2O8的理論密度與燒結密度 ……………64
4.3.1.3 MC-added Zn3Nb2O8的理論密度與燒結密度 ……………65
4.3.2 Zn3Nb2O8系列燒結後的晶相鑑定……………………………66
4.3.2.1 Zn3Nb2O8燒結後的晶相鑑定………………………………66
4.3.2.1 BC-added Zn3Nb2O8燒結後的晶相鑑定 …………………67
4.3.2.3 MC-added Zn3Nb2O8燒結後的晶相鑑定 …………………68
4.3.3 Zn3Nb2O8系列表面結構觀察…………………………………69
4.3.3.1 Zn3Nb2O8表面結構觀察……………………………………69
4.3.3.2 BC-added Zn3Nb2O8的表面結構觀察 ……………………71
4.3.3.3 MC-added Zn3Nb2O8的表面結構觀察 ……………………72
4.3.4 Zn3Nb2O8系列微波介電性質…………………………………74
4.3.4.1 Zn3Nb2O8的微波介電性質…………………………………74
4.3.4.2 BC-added Zn3Nb2O8的微波介電性質 ……………………75
4.3.4.3 MC-added Zn3Nb2O8的微波介電性質 ……………………77
4.4 Zn3Nb2O8系列與銀電極共燒時,其界面行為的研究…………79
第五章 Bi1.5Zn0.92Nb1.5O6.92系列低溫燒結微波介電陶瓷材料之研究 ……………………………………………………………………83
5.1. 研究摘要…………………………………………………………83
5.2 Bi1.5Zn0.92Nb1.5O6.92系列粉末基本性質 …………………84
5.2.1 晶相鑑定………………………………………………………84
5.2.2 化學成分組成…………………………………………………84
5.2.3 粒徑與表面積…………………………………………………85
5.3 助燒結劑配方的調配……………………………………………86
5.4 Bi1.5Zn0.92Nb1.5O6.92系列燒結後的性質測試 ……………90
5.4.1 Bi1.5Zn0.92Nb1.5O6.92系列的理論密度與燒結密度 ……91
5.4.1.1 Bi1.5Zn0.92Nb1.5O6.92的理論密度與燒結密度 ………90
5.4.1.2 MC-added Bi1.5Zn0.92Nb1.5O6.92的理論密度與燒結密度 ………………………………………………………………………92
5.4.1.3 BC-added Bi1.5Zn0.92Nb1.5O6.92的理論密度與燒結密度 ………………………………………………………………………92
5.4.2 Bi1.5Zn0.92Nb1.5O6.92系列的晶相鑑定 …………………94
5.4.2.1 Bi1.5Zn0.92Nb1.5O6.92的晶相鑑定 ……………………94
5.4.2.2 MC-added Bi1.5Zn0.92Nb1.5O6.92的晶相鑑定…………95
5.4.2.3 BC-added Bi1.5Zn0.92Nb1.5O6.92的晶相鑑定…………96
5.4.3 Bi1.5Zn0.92Nb1.5O6.92系列微結構觀察 …………………97
5.4.3.1 MC-added Bi1.5Zn0.92Nb1.5O6.92的微結構觀察………97
5.4.3.2 BC-added Bi1.5Zn0.92Nb1.5O6.92的微結構觀察 ……103
5.4.4 Bi1.5Zn0.92Nb1.5O6.92系列微波介電性質………………105
5.4.4.1 Bi1.5Zn0.92Nb1.5O6.92的微波介電性質………………105
5.4.4.2 MC-added Bi1.5Zn0.92Nb1.5O6.92的微波介電性質… 105
5.4.4.3 BC-added Bi1.5Zn0.92Nb1.5O6.92的微波介電性質… 106
5.5 Bi1.5Zn0.92Nb1.5O6.92系列與銀電極共燒時,其界面行為的研究……………………………………………………………………107
第六章 Bi1.5Zn0.92Nb1.5O6.92介電行為的研究…………………111
6.1 研究摘要 ………… ……………………………… …………111
6.2 Bi1.5Zn0.92Nb1.5O6.92粉末基本性質………………………112
6.2.1 晶相鑑定 ……………………………………………………112
6.2.2 粒徑分佈與表面積 …………………………………………113
6.2.3 化學成分組成 ………………………………………………114
6.3 Bi1.5Zn0.92Nb1.5O6.92微結構觀察…………………………115
6.4 Bi1.5Zn0.92Nb1.5O6.92介電鬆弛行為研究 ……… ………117
6.5 Bi1.5Zn0.92Nb1.5O6.92與Bi1.5Zn1Nb1.5O7微波介電性質量測………………………………………………………………………122
第七章 結論與建議 …………………………………………………123
7.1 結論 ………………………………………………………125
7.1.1 Zn3Nb2O8系列低溫燒結微波介電陶瓷材料之研究 ………123
7.1.2 Bi1.5Zn0.92Nb1.5O6.92系列低溫燒結微波介電陶瓷材料之研究……………………………………………………………………125
7.1.3 Bi1.5Zn0.92Nb1.5O6.92介電行為的研究…………………127
7.2 建議與未來工作 ………………………………………………128
參考文獻………………………………………………………………130


● Buranov L. T. and Shchegoler I. F., Translated from Pribory I Tekimilon Eksperiments, No. 2, p.171, 1971
● Cann, D. P.; Randall, C. A.; Shrout T. R.; “Investigation of the dielectric properties of bismuth pyrochlores”, Solid State Communications, Vol. 100, No. 7, p.529-534, 1996
● Cava, R. J.; “Dielectric materials for applications in microwave communications”, J. Mater. Chem., Vol. 11, p.54-62, 2001
● Chiang, Y. M.; Birnie, D.; Kingery, W. D.; “Physical Ceramics”, Wiley, p.24-27, 1996
● Cho, S.; Youn H. ; Kim, D.; Kim, T.; Hong, K. S.; “Interaction of BiNbO4-based low-firing ceramics with silver electrodes”, J. Am. Ceram. Soc., 81 [11], p.3038-3040, 1998
● Chen, S.-Y.; Lin, Y.-J.; “Effect of CuO-based oxide additives on Bi2O3-ZnO-Nb2O5 microwave ceramics”, Jpn. J. Appl. Phys., Vol.40, p.3305-3310, 2001
● Chen, S.-Y. ; Lee, S.-Y. ; Lin, Y.-J.; “Phase transformation, reaction kinetics and microwave characteristics of Bi2O3–ZnO–Nb2O5 ceramics” Journal of the European Ceramic Society, Vol. 23, p.873–881, 2003
● Coble, R. L.; ”Sintering crystalline solid I: Intermediate and final state diffusion models”, J. Appl. Phys., Vol. 32, No. 5, p.787-792, 1961
● Du H.; Yao X.; ”Synthesis and dielectric properties development of new thermal stable bismuth pyrochlores”, Journal of Physics and Chemistry of Solids, Vol. 63, p.2123–2128, 2002
● Hu, Y.; Huang, C. L.; “Structure and dielectric properties of bismuth-based dielectric ceramics”, Materials Chemistry and Physics, Vol. 72, p.60-65, 2001
● Kamba, S. ; Petzelt, J. ; Buixaderas, E. ; Haubrich, D., P. ; Vanek, P. ; Ku?el, P. ; Jawahar I. N.; Sebastian M. T.; Mohanan P.; “High frequency dielectric properties of A5B4O15 microwave ceramics”, Journal of Applied Physics, Vol. 89, p.3900-3906. 2001
● Kamba, S.; Porokhonskyy, V.; Pashkin, A.; Bovtun, V.; Petzelt, J.; Nino, J. C.; Trolier-McKinstry, S. ; Lanagan, M. T.; Randall, C. A.; “Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore”, Physical Review B, Vol.66, 054106, 1-8. 2002
● Kingery. W. D.; Bowen, H. K.; Uhlmann, D.R.; “Introduction to Ceramics, 2nd edition”, Wiley, 1975
● Levin, I.; Amos, T.G.; Nino, J. C.; Vanderah, T. A.; Randall, C. A.; Lanagan, M.T.; “Structural study of an unusual Cubic Pyrochlore Bi1.5Zn0.92 Nb1.5O6.92”, Journal of Solid State Chemistry, Vol.168, 69–75. 2002
● Ling, H. C., Yan, M. F.; Rhodes, W. W.; “High dielectric constant and small temperature coefficient bismuth-based dielectric compositions”, J. Mater. Res., Vol. 5, No. 8, p.1752-1762, 1990
● Liu, D.; Liu, Y.; Huang, S.; Yao, X.; “Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5-based dielectric ceramics”, J. Am. Ceram. Soc., 76 [8], p.2129-32, 1993
● Margen, A.; Lee, W. E.; “Crystal chemistry, thermal expansion and dielectric properties of (Bi1.5Zn0.5)(Sb1.5Zn0.5)O7 pyrochlore”, Materials Research Bulletin, Vol. 32, No. 2, p.175-189, 1997
● Nino, J. C.; Lanagan, M. T.; Randall, C. A.; “Phase formation and reactions in the Bi2O3-ZnO-Nb2O5-Ag pyrochlore system”, J. Mater. Res., Vol. 16, No. 5, 2001
● Nino, J. C.; Lanagan, M. T.; Randall, C. A.; “Dielectric relaxation in cubic pyrochlore”, J. Appl. Phys., Vol. 89, No. 8, p.4512-4516, 2001
● Nino, J. C. ; Lanagan, M.T. ; Randall, C. A. ; Kamba, S. ; “Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore”, Applied Physics Letters, Vol. 81, p.4404-4406. 2002
● Petzelt, J.; Kamba, S.; “Submillimetre and infrared response of microwave materials: extrapolation to microwave properties”, Materials Chemistry and Physics, Vol.79, p.175-180. 2003
● Ren, W.; Trolier-Mckinstry, S.; Randall, C. A.; Shrout, T. R.; “Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications”, J. Appl. Phys., Vol. 89, No. 1, p.767-774, 2001
● Roth, R. S.; Dennis, J. R.; McMurdie, H. F.; “Phase diagrams for ceramists”, The American Ceramic Society, Inc., 1987
● Shim, K. B.; Cho, N. T.; Lee, S. W.; “Silver Diffusion and microstructure in LTCC multilayer couplers for high grequency applications ”, J. Mater. Sci., Vol. 35, p.813-820. 2000
● Su, W.-F.; Lin, S.-C.; “Interfacial behaviour between Bi1.5ZnNb1.5O7 • 0.02V2O5 and Ag”, J. Europe. Ceram. Soc., Vol. 23, p.2593–2596. 2003
● Sutton, W. H.; “Microwave Processing od Ceramics-An overview”, Mater. Res. Soc. Symp. Proc., C. 269, p.3-20, 1992
● Valant, M.; Suvorov, D.; “Chemical compatibility between silver electrode and low-firing binary-oxide compounds: conceptual study”, J. Am. Ceram. Soc., 83, [11], p.2721-2729, 2000
● Valant, M.; Davies P. K.; “Crystal chemistry and dielectric properties of chemically substituted Bi1.5ZnNb1.5O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores”, J. Am. Ceram. Soc., 83, [1], p.147-153, 2000
● Wang, H.; Wang, X.; Yao, X.; “Phase equilibrium in Bi2O3-ZnO-Nb2O5 system”, Ferroelectrics, Vol. 195, p.19-22, 1997
● Wang, H.; Zhang, D.; Wang, x.; Yao, X.; “Effect of La2O3 substitutions on structure and dielectric properties of Bi2O3-ZnO-Nb2O5-based pyrochlore ceramics”, J. Mater. Res., Vol. 14, No. 2, p.546-548, 1999
● Wang, X.; Wang, H.; and Yao, X.; “Structures, Phase Transformations, and Dielectric Properties of Pyrochlores Containing Bismuth” J. Am. Ceram. Soc., 80 [10], p.2745–48, 1997
● Wang, S. F.; Huebner W.; “Interaction of Ag/Pd metallization with lead and bismuth oxide-based fluxes in multilayer ceramic capacitors”, J. Am. Ceram. Soc., 75 [9], p.2339-2352, 1992
● Yan, M. F.; Ling, H. C.; Rhodes, W. W.; “Low-firing, temperature-stable dielectric compositions based on bismuth nickel zinc niobates”, J. Am. Ceram. Soc., 73, p.1106-1107, 1990
● Yan, M. F.; Ling, H. C.; “Low sintering temperature, high dielectric constant and small temperature coefficient dielectric compositions”, Materials Chemistry and Physics, Vol. 44, p.37-44, 1996
● Yee, K. A.; Han, K. R.; “The effect of V2O5 on the sintability and physical properties of Bi3O3-NiO-Nb2O5 and Bi2O3-ZnO-Nb2O5 temperature-stable dielectrics”, J. Mater. Sci., Vol. 34, p.4699-4704, 1999
● Zuo, R.; Li, L.; Gui, Z.; “Influence of silver migration on dielectric on dielectric properties and reliability of relaxor based MLCCs”, Ceramics International, Vol. 26, p.673-676, 2000
● Zuo, R.; Li, L.; Gui, Z.; Ji, C.; Hu, X.; “Vapor diffusion of silver in cofired silver/palladium-ferroelectric ceramic mulitlayer”, Materials Science and Engineering, B38, p.152-157, 2001
● 江傳宗, “添加物對微波介電陶瓷之燒結、顯微組織及介電特性之研究”, 台北科技大學材料及資源所碩士論文, 2001
● 林翌照,“添加劑對鉍鋅鈮陶瓷之微波物性與電性研究”,交通大學材料所碩士論文, 1999
● 吳志明, “鉍鋅鈮系微波介電陶瓷添加V2O5之低溫燒結研究”, 清華大學材料所碩士論文, 1999
● 鄒文正, “液相燒結微波介電陶瓷及微波元件之研製”,中山大學電機所博士論文, 2003
● 黃文信, “弛緩性鐵電陶瓷Pb(Mg1/3Nb2/3)O3及Pb(Li1/4Fe1/4W1/2)O3之合成、燒結與介電特性”, 台灣大學碩士論文, 1994
● 黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會, 2001
● 黃建龍, “Bi2O3-ZnO-Nb2O5系陶瓷結構與介電特性之研究”, 大同大學材料所博士論文, 2000
● 翁震良, “鈦酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究”, 台灣大學碩士論文, 2000
● 陳宜君, “利用全頻譜與掃描微探顯微術研究微波材料的介電機制,”臺灣師範大學物理所博士論文, 2002
● 傅勝利, “介電陶瓷”, 陶瓷技術手冊, 汪建民主編, 中華民國產業科技發展協進會與中華民國粉末冶金協會共同出版, 1994
● 蕭鴻昱, “鉍鋅鈮系微波介電陶瓷之研究”, 清華大學材料所碩士論文, 2000

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 宋振華、楊子翔、樊國楨(2001)。資訊系統入侵與偵防。資訊安全通訊,7(2),91-97。
2. 李維倫(2003)。駭客入侵-淺談個人電腦網路安全。資訊與教育(94),93-99。
3. 何洵怡(2002)。談中文科漫畫教學。國文天地17(8),83-88。
4. 吳美美(1996a)。資訊時代人人需要資訊素養。社教雙月刊(73),4-5。
5. 李忠憲(2001)。增進校園網路安全。教師天地(111),40-45。
6. 李正吉、林詠章、黃明祥(2002)。電子檔案之安全技術。檔案季刊,1(2),48-57。
7. 沈中偉(1999)。國小資訊教育的省思與理念。資訊與教育(71),52-57。
8. 尹玫君(2000a)。國小老師的網路教學素養與培育。資訊與教育(79),13-19。
9. 林珊如、劉旨峰、袁賢銘(2001)。技術學院資訊相關科系學生的電腦病毒之迷思概念研究。資訊與教育(86),51-61。
10. 林逢慶(2003)。消弭數位落差:政府的責任與對策。國家政策季刊2(1),29-52。
11. 林詠章、黃明祥(2000)。資訊系統之安全技術。資訊與教育(78),15-28。
12. 陳文進(2000)。我國資訊教育之演進與未來發展。資訊與教育(80),78-89。
13. 陳長榮、崔友經(2002)。公開金鑰基礎建設之應用與議題。通訊雜誌(108),36-39。
14. 陳則黎、蘇偉慶(2000)。SSL及SET之分析比較。資訊安全通訊,6(3),58-78。
15. 張郁蔚(2003)。從資訊素養標準探討我國小學資訊教育課程。國立中央圖書館臺灣分館館刊,9(2),58-72。