(3.238.96.184) 您好!臺灣時間:2021/05/08 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許如君
研究生(外文):Ju-Chun Hsu
論文名稱:東方果實蠅對殺蟲劑的抗藥性研究
論文名稱(外文):Study on Insecticide Resistance in Oriental Fruit Flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)
指導教授:吳文哲吳文哲引用關係
指導教授(外文):Wen-Jer Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:90
中文關鍵詞:抗藥性乙醯膽鹼酯酶生化機制基因東方果實蠅
外文關鍵詞:insecticide resistancebiochemical mechanismAceBactrocera dorsalis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:394
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
東方果實蠅(Bactrocera dorsalis (Hendel))是台灣最重要的果樹害蟲之一,目前有多種殺蟲劑防治其在田間的發生。以室內東方果實蠅品系分別用乃力松、三氯松、撲滅松、芬殺松、福木松、馬拉松、納乃得、賽滅寧、賽扶寧及芬化利等篩選十個品系30代後,證實東方果實蠅會對上述篩選的殺蟲劑產生抗藥性,其抗性程度從對乃力松的4.7倍到福木松的594倍。以DEF(S,S,S-tributylphosphorotrithioate)、DEM (diethyl maleate)及PBO(piperonyl butoxide)三種協力劑抑制昆蟲代謝解毒酵素,測試感性品系和十種抗性品系對殺蟲劑的感受性,據以推測代謝酵素對抗性的貢獻並解釋十種抗性品系對其它種殺蟲劑之間的交互抗性。乃力松、三氯松及馬拉松等三個抗性品系對這三個原始篩選的殺蟲劑在測試時有顯著的交互抗性,推測是因此三品系對其篩選藥劑之抗性皆具DEF協力作用所造成;賽扶寧、賽滅寧及芬化利之三抗性品系對這原始篩選的三個合成除蟲菊殺蟲劑也產生了顯著的交互抗性,究其原因則可能是因此三品系對其篩選藥劑的抗性皆具PBO協力作用所造成。在所測試的十種抗性品系中,對殺蟲劑的交互抗性現象不僅存在於同類別的殺蟲劑亦存在於不同類別的殺蟲劑上,尤以賽滅寧及芬化利抗性品系為烈,二者對其它殺蟲劑的抗性程度甚至大於對原篩選藥劑本身。相反地,六種有機磷及納乃得抗性品系對賽滅寧及芬化利則沒有交互抗性存在。進一步探討四種生化機制對馬拉松及撲滅松抗性的貢獻,只有麩胺基硫轉移酶(glutathione S-transferase)在馬拉松抗性品系和感性品系上無差異外,在抗性蟲上酯酶(esterase)及多功能氧化酶(mixed function oxidase)的量明顯高於感性蟲。另在標的酵素- 乙醯膽鹼酯酶(acetylcholinesterase (AChE))在抗性蟲上對有機磷抑制劑則明顯較感性蟲不敏感。酯酶及氧化酶代謝的增加及乙醯膽鹼酯酶對抑制劑的不敏感性是東方果實蠅對馬拉松產生抗性的主要貢獻。在撲滅松抗性部分,則排除水解酶、麩胺基硫轉移酶及氧化酶等代謝酵素是對撲滅松產生抗性的原因,其抗性果實蠅頭部乙醯膽鹼酯酶對有機磷劑抑制的不敏感性為東方果實蠅對撲滅松產生抗性的主要機制。再藉由乙醯膽鹼酯酶基因的解序,得知感性果實蠅的乙醯膽鹼酯酶基因的胺基酸編碼區有2022個鹼基對,可轉譯成673個胺基酸。撲滅松的抗性蟲則在胺基酸序列上有三個點突變,分別為 I214V、G488S及Q643R,這些突變是造成抗性蟲對撲滅松產生不敏感性的主要原因。
Oriental fruit flies, Bactrocera dorsalis (Hendel), were treated with ten insecticides, including six organophosphorus insecticides (naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion), one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate), by a topical application assay under laboratory conditions. Sub-parental lines of each generation of the oriental flies treated with the same insecticide were selected for 30 generations and were designated as x-r lines (x: insecticide; r: resistant). The parent colony was maintained as the susceptible colony. The line treated with naled exhibited the lowest increase in resistance (4.7-fold) while the line treated with formothion exhibited the highest increase in resistance (up to 594-fold) compared to the susceptible colony. Synergism bioassays were also carried out. Based on this, when oriental fruit flies were treated with S,S,S-tributyl phosphorotrithioate displayed a synergistic effect for naled, trichlorfon and malathion resistance, whereas the colonies treated piperonyl butoxide displayed a synergistic effect for pyrethroid resistance. All ten resistant lines also exhibited some cross resistance to other insecticides, not only to the same chemical class of insecticides but also to other classes. However, none of the organophosphorus-resistant or the methomyl-resistant lines exhibited cross-resistance to two of the pyrethroids (cypermethrin and fenvalerate). Overall, the laboratory resistance and cross-resistance data of the fruit flies treated with insecticides developed here should provide useful tools and information for designing an insecticide application strategy for controlling this fruit fly in the field. Extended study to explore the biochemical mechanism of resistance to the organophosphorus insecticides, malathion and fenitrothion, in the fly showed that the enzyme activity of glutathione S-transferase was not significantly different between the malathion-resistant line and susceptible colony. However, malathion-resistant line exhibited higher activity in esterase and mixed function oxidase than the susceptible colony did. The target enzyme, acetylcholinesterase (AChE), from the resistant line was less sensitive to the inhibition of organophosphorus inhibitors than that from the susceptible colony. These results suggested that elevated hydrolytic and oxidative metabolic enzymes in conjunction with an altered AChE with poorer catalytic efficiency might contribute to the resistance of this fly to malathion. To fenitrothion, the resistant line exhibited reduced AChE activity compared to that in susceptible colony, while the activities of the other enzymes did not significantly differ between these two fruit fly colonies. The resistant line also exhibited at least a 10-fold reduced sensitivity to a series of AChE inhibitors compared to that of susceptible colony. To investigate the molecular basis of this fenitrothion resistance, cDNAs from the gene encoding AChE were characterized from individuals representing both the resistant lines and susceptible colony. Three point mutations, I214V, G488S and Q643R, resulting in nonsynonymous changes in the amino acid sequence of this gene were detected in the resistant flies. These changes appear to correspond to key catalytic sites affecting the function of AChE.
TABLE OF CONTENTS
ACKNOWLEDGMENTS i
ABSTRACT OF THE DISSERTATION iii
CHINESE ABSTRACT vi
LIST OF TABLES xii
LIST OF ILLUSTRATIONS xiv
CHAPTER 1. INTRODUCTION 1
Insecticide Resistance 1
Insecticide Resistance Mechanism 3
The Biology of Bactrocera dorsalis 6
History of Chemical Control of B. dorsalis in Taiwan 8
CHAPTER 2. RESISTANCE AND SYNERGISTIC EFFECTS OF INSECTICIDES IN BACTROCERA DORSALIS (DIPTERA: TEPHRITIDAE) IN TAIWAN 11
Abstract 11
Introduction 12
Materials and Methods 14
Insects 14
Chemicals 15
Resistant Lines and Bioasssays 16
Synergism Bioassays 18
Cross-resistance Bioassays 18
Results 19
Susceptible Colony 19
Establishment of Resistant Lines 19
Synergism Bioassays 20
Cross-resistance Bioassays 21
Discussion 22
CHAPTER 3. BIOCHEMICAL MECHANISMS OF MALATHION RESISTANCE IN ORIENTAL FRUIT FLIES (BACTROCERA DORSALIS) 32
Abstract 32
Introduction 33
Materials and Methods 34
Chemicals 34
Laboratory Colonies 34
Enzyme-activity Assays 36
Esterases 36
Glutathione S-transferases 37
Mixed Function Oxidases 37
AChE Activity and Insensitivity 38
Enzyme Kinetic Studies 39
Results 40
Discussion 41
CHAPTER 4. ASSOCIATION OF POINT MUTATIONS IN THE ACE GENE WITH FENITROTHION RESISTANCE IN THE ORIENTAL FRUIT FLY 52
Abstract 52
Introduction 53
Materials and Methods 56
Oriental Fruit Flies 56
Enzyme-activity Assays 57
Esterases 57
Glutathione S-transferases 58
Mixed Function Oxidases 58
AChE Activity and Insensitivity 59
Cloning and Sequencing of AChE Gene of Susceptible Flies 60
Cloning and Sequencing of AChE Gene of Resistant Flies 62
AChE Inhibition Assay and Sequencing the cDNA 62
Results 63
Enzyme-activity Assays 63
cDNA and Deduced Amino Acid Sequences of Susceptible AChE 64
Comparison of AChE Genes from Fenitrothion-susceptible and -resistant Flies 64
AChE Inhibition Assay plus Sequencing the cDNA 65
Discussion 65
CHAPTER 5. CONCLUSION 77
REFERENCES 80
APPENDIX
Abd-Elghafar, S. F., C. O. Knowles, and M. L. Wall. 1993. Pyrethroid resistance in two field strains of Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 86: 1651-1655.
Ahmed, S., and R. M. Wilkins. 2002. Studies on some enzymes involved in insecticide resistance in fenitrothion-resistant and -susceptible strains of Musca domestica L. (Dipt, Muscidae). J. Appl. Entomol. 126: 510-516.
Anonymous. 2000. Malathion registration eligibility document: environmental fate and effects. United States Environmental Protection Agency, Washington, D.C. 146 pp.
Baker, J. E., J. A. Fabrick, and K. Y. Zhu. 1998. Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandrae. Insect Biochem. Mol. Biol. 28: 1039-1050.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72: 248-254.
Brewer, M. J., and J. T. Trumble. 1994. Beet armyworm resistance to fenvalerate and methomyl: resistance variation and insecticide synergism. J. Agric. Entomol. 11: 291-300.
Brogdon, W. G., J. C. McAllister, and J. Vulule. 1997. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing the elevated oxidase mechanism for insecticide resistance. J. Am. Mosqu. Control Assoc. 13: 233-237.
Brown, A. W. 1960. Mechanisms of resistance against insecticides. Ann. Rev. Entomol. 5: 301-326.
Brown, T. M. 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Ann. Rev. Entomol. 32: 145-162.
Brown, T. M., and G. T. Payne. 1988. Experimental selection for insecticide resistance. J. Econ. Entomol. 81: 49-56.
Busvine, J. R. 1980. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: Method for tephritid fruit flies- FAO Method No. 20. FAO Plant Prot. Bull. 27: 40-43.
Chaabihi, H., D. Fournier, Y. Fedon, J. P. Bossy, M. Ravallec, G. Devauchelle, and M. Cerutti. 1994. Biochemical characterization of Drosophila melanogaster acetylcholinesterase expressed by recombinant baculoviruses. BBRC 203: 734-742.
Chiu, H. T. 1978. Studies on the improvement of mass rearing for oriental fruit flies. Plant Prot. Bull. 20: 87-92. (in Chinese)
Christenson, L. D., and R. H. Foote. 1960. Biology of fruit flies. Ann. Rev. Entomol. 5: 171-192.
Crow, J. F. 1957. Genetics of insect resistance to chemicals. Ann. Rev. Entomol. 2: 227-246.
Devonshire, A. L., L. M. Field, and M. S. Williamson. 1992. Molecular biology of insecticide resistance. pp. 173-183. In: J. M. Crampton, and P. Eggleston, eds. Insect Molecular Science. Academic Press, London.
Ellman, G. L., K. D. Courtney, Jr., V. Andres, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-96.
Eto, M. 1974. Organophosphorus Pesticides: Organic and Biological Chemistry. CRC, Cleveland, OH. 387 pp.
Feyereisen, R. 1995. Molecular biology of insecticide resistance. Toxicol. Lett. 82/83: 89-90.
Fletcher, B. S. 1987. The biology of dacine fruit flies. Ann. Rev. Entomol. 32: 115-144.
Fournier, D., J. M. Bride, F. Hoffman, and F. Karch. 1992a. Acetylcholinesterase: Two types of modifications confer resistance to insecticides. J. Biol. Chem. 267: 14270-14274.
Fournier, D., A. Mutero, M. Pralavorio, and J. M. Bride. 1992b. Drosophila acetylcholinesterase: analysis of structure and sensitivity to insecticides by in vitro mutagenesis and expression. pp. 75-81. In: A. Shafferman, and B. Velan, eds. Multidisciplinary Approaches to Cholinesterase Functions. Plenum Press, New York.
Guedes, R. N. C., S. Kambhampati, B. A. Doer, and K. Y. Zhu. 1997. Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) populations from the United States and Brazil. Bull. Entomol. Res. 87: 581-586.
Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathion-S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
Hama, H. 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase. pp. 1-46. In: P. G. Georghiou, and T. Saito, eds. Pest Resistance to Pesticides. Plenum Press, New York.
Hama, H. 1984. Mechanism of fenitrothion-resistance and diazinon-resistance in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera, Deltocephalidae)- the role of aliesterase. Jap. J. Appl. Entomol. Zool. 28: 143-149.
Harel, M., G.. Kryger, T. L. Rosenberry, W. D. Mallender, T. Lewis, R. J. Fletcher, J. M. Guss, I. Silman, and J. L. Sussman. 2000. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 9: 1063-1072.
He, Y. P., E. B. Ma, and K. Y. Zhu. 2004. Characterizations of general esterases in relation to malathion susceptibility in two field populations of the oriental migratory locust, Locusta migratoria manilensis (Meyen). Pestic. Biochem. Physiol. 78: 103-113.
Hsu, J-C., and H-T. Feng. 2000. Insecticide susceptibility of the oriental fruit fly (Bactrocera dorsalis (Hendel))(Diptera: Tephritidae) in Taiwan. Chinese J. Entomol. 20: 109-118.
Hsu, J-C., and H-T. Feng. 2002. Susceptibility of melon fly (Bactrocera cucurbitae) and oriental fruit fly (B. dorsalis) to insecticides in Taiwan. Plant Prot. Bull. 44: 303-314. (in Chinese)
Hsu, J-C., H-T. Feng, and W-J. Wu. 2004a. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 97(5): (in press)
Hsu, J-C., W-J. Wu, and H-T. Feng. 2004b. Biochemical mechanisms of malathion resistance in oriental fruit fly (Bactrocera dorsalis). Plant Prot. Bull. (accepted)
Karunaratne, S. H. P. P., and J. Hemingway. 2001. Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bull. WHO 79: 1060-1064.
Keiser, I. 1989. Insecticide resistance status. pp. 337-344. In: A. S. Robinson, and G. Hopper, eds. Fruit Flies: Their Biology, Natural Enemies, and Control. Volume 3B. Elsevier Science Publishers, Amsterdam.
Keiser, I., R. M. Kobayashi, E. L. Schneider, and I. Tomikawa. 1973. Laboratory assessment of 73 insecticides against the oriental fruit fly, melon fly, and Mediterranean fruit fly. J. Econ. Entomol. 66: 837-839.
Konno, Y., and T. Shishido. 1989. Binding-protein, a factor of fenitroxon detoxication in OP-resistant rice stem borers. J. Pestic. Sci. 14: 359-362.
Koren, B., A. Yawetz, and A. S. Perry. 1984. Biochemical properties characterizing the development of tolerance to malathion in Ceratitis capitata Wiedemann (Diptera: Tephritidae). J. Econ. Entomol. 77: 864-867.
Kotze, A. C., and B. E. Walkbank. 1996. Esterase and monooxygenase activities in organophosphate-resistant strains of Oryzaephilus surinamensts (Coleoptera, Cucujidae). J. Econ. Entomol. 89: 571-576.
Kozaki, T., T. Shono, T. Tomita, and Y. Kono. 2001. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem. Mol. Biol. 31: 991-997.
LeOra Software. 1987. Polo-PC: a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA.
Metcalf, R. L. 1989. Insect resistance to insecticides. Pestic. Sci. 26: 333-358.
Mullin, C. A., and Scott, J. G. 1992. Biomolecular basis for insecticide resistance: Classification and comparisons. pp. 1-13. In: C. A. Mullin, and J. G. Scott, eds. Molecular Mechanisms of Insecticide Resistance. American Chemical Society, Washington, DC.
Mutero, A., M. Pralavorio, J. M. Bride, and D. Fournier. 1994. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA 91: 5922-5926.
National Research Council. 1986. Pesticide Resistance. Strategies and Tactics for Management. National Academy of Sciences, Washington, D.C.
Nishizawa Y., K. Fujii, T. Kadota, J. Miyamoto, and H. Sakamoto. 1961. Studies on organophosphorus insecticicdes part VII. Chemical and biological properties of new low toxic organophosphorus insecticide, O, O-Dimiethyl-O-(3-methyl-4-nitrophenyl) Phosphorothioate. Agric. Biol. Chem. 25: 605-610.
Oppenoorth, F. J., and W. Welling. 1979. Biochemistry and physiology of resistance. pp. 507-551. In: C. F. Wilkinson, ed. Insecticide Biochemistry and Physiology, 2. Plenum Press, New York.
Orphanidis, P. S., B. Kalmoukos, B. Betzios, and E. Kapetanakis. 1980. Development of resistance in Ceratitis capitata Wied. in laboratory under intermittent pressure of organophosphorus and chlorinated insecticides. Annales de l’Institut Phytopathologique Benaki (N.S.) 12: 198-207.
Ottea, J. A., S. A. Ibrahim, A. M. Younis, and R. J. Young. 2000. Mechanisms of pyrethroid resistance in larvae and adults from a cypermethrin-selected strains of Heliothis virescens (F.). Pestic. Biochem. Physiol. 66: 20-32.
PDAF. 1972. Plant Protection Manual. Department of Agriculture and Forestry, Taiwan Provincial Government, Nantou, Taiwan. 686 pp. (in Chinese)
PDAF. 1996. Plant Protection of Horticultural and Special Horticultural Crops, 2nd ed. Department of Agriculture and Forestry, Taiwan Provincial Government, Nantou, Taiwan. (in Chinese)
Penilla, R. P., A. D. Rodriguez, J. Hemingway, J. L. Torres, J. I. Arredondo-Jimenez, and M. H. Rodriguez. 1998. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med. Vet. Entomol. 12: 217-233.
Perez, C. J., P. Alvarado, C. Narvaez, F. Miranda, L. Hernandez, H. Vanegas, A. Hruska, and A. M. Shelton. 2000. Assessment of insecticide resistance in five insect pests attacking field and vegetable crops in Nicaragua. J. Econ. Entomol. 93: 1779-1787.
Plapp, F. W., Jr, and H. H. C. Tong. 1966. Synergism of malathion and parathion against resistant insects: Phosphorus esters with synergistic properties. J. Econ. Entomol. 59: 11-15.
Robertson, J. L., and H. K. Preisler. 1991. Pesticide Bioassays with Arthropods. CRC Press Inc., Florida. 127 pp.
Roessler, Y. 1989. Insecticidal bait and cover sprays. pp. 329-336. In: A. S. Robinson, and G. Hopper, eds. Fruit Flies: Their Biology, Natural Enemies, and Control. Volume 3B. Elsevier Science Publishers, Amsterdam.
Shiotsuki, T., R. Takey, M. Eto, and T. Shono. 1988a. Biochemical changes in the cytochrome P450 monooxygenases of seven insecticide-resistant house fly (Musca domestica L.) strains. Pestic. Biochem. Physiol. 36: 127-134.
Shiotsuki, T., R. Takey, M. Eto, and T. Shono. 1988b. Characteristics of houseflies selected by fenitrothion and diethyl fenitrothion. J. Biol. Chem. 52: 2191-2196.
StatSoft, Inc. 2003. STATISTICA (data analysis software system), version 6. StatSoft, Inc., Tulsa, OK.
Steiner, L. F. 1952. Methyl eugenol as an attractant for oriental fruit fly. J. Econ. Entomol. 45: 241-248.
Stumpf, N., and R. Nauen. 2001. Cross-resistance, inheritance and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 94: 1577-1583.
TACTRI. 1998. Plant Protection Manual. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan. 734 pp. (in Chinese)
TACTRI. 2000. Plant Protection Manual. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan. 764 pp. (in Chinese)
TACTRI. 2002. Plant Protection Manual. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, Taiwan. 791 pp. (in Chinese)
TARI (Taiwan Agricultural Research Institute). 1972. The attractant test of orient fruit fly. pp. 173. In: Department of Agriculture and Forestry Taiwan Provincial Government, ed. Plant Protection of Tested Report 61. (in Chinese)
Townsend, B. A., and G. P. Carlson. 1981. Effect of halogenate benxenes on the toxicity and metabolism of malathion, malaoxon, parathion, and paraoxon in mice. Toxicol. Appl. Pharmacol. 60: 51-61.
Van Asperen, K. 1962. A study of house fly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 8: 401-416.
Vaughan, A., T. Rocheleau, and R. ffrench-Constant. 1997. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Exp. Parasitol. 87: 237-244.
Vontas, J. G., N. Cosmidis, M. Loukas, S. Tsakas, M. J. Hejazi, A. Ayoutanti, and J. Hemingway. 2001. Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pestic. Biochem. Physiol. 71: 124-132.
Vontas, J. G., M. J. Hejazi, N. J. Hawkes, N. Cosmidis, M. Loukas, and J. Hemingway. 2002. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11: 329-336.
Welling, W., A. W. De Vries, and S. Xoerman. 1974. Oxidative cleavage of a carboxyester bond as a mechanism of resistance to malaoxon in houseflies. Pestic. Biochem. Physiol. 4: 31-43.
Whyard, S., and V. K. Walker. 1994. Characterization of malathion carboxylesterase in the sheep blowfly Lucilia cuprina. Pestic. Biochem. Physiol. 50: 198-206.
Whyard, S., R. J. Russell, and V. K. Walker. 1994. Insecticide resistance and malathion carboxylesterase in the sheep blowfly, Lucilia cuprina. Biochem. Genet. 32: 9-24.
Wilkinson, C. F., ed. 1976. Insecticide Biochemistry and Physiology. Plenum Press, New York. 768 pp.
Wilson, J. A., A. G. Clark, and N. A. Haack. 1999. Effect of piperonyl butoxide on diazinon resistance in field colonies of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae), in New Zealand. Bull. Entomol. Res. 89: 295-301.
Wood, R. J., and D. J. Harris. 1989. Artificial and natural selection. pp. 19-31. In: A. S. Robinson, and G. Hopper, eds. Fruit Flies: Their Biology, Natural Enemies, and Control. Volume 3B. Elsevier Science Publishers, Amsterdam.
Zhu, K. Y., and J. M. Clark. 1995. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol. 25: 1129-1138.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔