(35.175.212.130) 您好!臺灣時間:2021/05/17 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡志宏
研究生(外文):Chih-Hung Tsai
論文名稱:高功率寬面積傾斜波導半導體雷射
論文名稱(外文):High-power angled broad-area semiconductor lasers
指導教授:蔡定平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:103
中文關鍵詞:可調高功率半導體雷射
外文關鍵詞:semiconductor lasersHigh-powertunable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高功率半導體雷射在釵h的應用中極為重要。因此,本篇論文的目的,主要在於探討高功率半導體雷射之設計與測量,我們在半導體雷射之設計上採用寬面積傾斜波導,設計發光波長在1.3μm及1.55μm的元件。在光輸出功率上,此元件可以達到瓦級的高功率,亦能有好的光場形。在波導的設計上,我們將波導設計成7°的傾斜,雖然波導的設計是傾斜的,但是當元件產生雷射光時,光束並非沿波導傾斜方向,而是以垂直鏡面方向發出。
在實驗方面,我們測量了這些元件的基本特性,包括:輸出功率對注入電流曲線、頻譜、近場以及遠場四種測量。此外,我們亦對元件架設外部共振腔,以提高元件的輸出必v。外部共振腔的架設是以光柵來提供光的反射,並測量經外部共振後,元件的特性改變情形,包括:光功率、頻譜、近場以及遠場。我們亦用光柵來調變光的輸出波段,元件的可調頻寬可從1275 nm至1310 nm,達35 nm。在光的場形上,遠場的角度可達到繞射極限的角度。
High power and good beam quality are desired for semiconductor lasers in many applications such as spectroscopy, device and material characterization, laser and amplifier pumping, and nonlinear wavelength conversion.
We propose a new type of broad area laser diodes that is capable of emitting good beam quality, high power and broadband tuning. The new type of laser diodes is fabricated with a broad-area waveguide that is oriented at an angle from the facet normal. This device does not require the DFB structure, so the fabrication is much simpler.
The L-I curves, spectra, near-field patterns and far-field patterns of the angled broad-area waveguide laser diode are measured. The direction of the far field pattern along the facet normal for the device operated above the threshold current indicates that the light path is not along the waveguide direction. With external cavity by grating, the laser diode is tunable from 1275nm to 1310nm with output power up to 1 watt at 6Amp. The beam quality is good and the near field is avoid of filamentation.
Contents

Chapter 1 Introduction

1.1 A Brief Review 1
1.2 Motivation 4
1.3 Overview of the Thesis 6

Chapter 2 Fabrication and Experimental Setups

2.1 Device structure 10
2.1.1 Geometrical Structure 11
2.1.2 Layer Structure 12
2.2 Device Fabrication 15
2.3 Experimental Setups 18
2.3.1 L-I Curve Measurement 19
2.3.2 Spectrum Measurement 21
2.3.3 Near Field and Far Field measurement 22

Chapter 3 High-power angled broad-area 1.3μm laser diodes with good beam quality

3.1 Introduction 27
3.2 Measurement and Result 29
3.3 Discussion 39
3.4 100μm width angled waveguide devices 42
3.5 Modified angled waveguide devices 47
3.6 Conclusion 51

Chapter 4 High-power angled broad-area 1.55μm laser diodes with good beam quality

4.1 Introduction 55
4.2 Fabrication 56
4.3 Experimental setup and result 57
4.4 Modified angled waveguide devices 62
4.5 Conclusion 67

Chapter 5 High power tunable semiconductor laser with angled broad-area waveguide

5.1 Introduction 71
5.2 Experimental setup and Result 73
5.3 External cavity of the 100μm wide
angled waveguide device 83
5.4 External cavity of the modified angled
broad-area semiconductor lasers 86
5.5 External cavity of the 1.55μm wavelength
semiconductor lasers 91
5.6 Conclusion 95

Chapter 6 Conclusion 100
Chapter1
[1] B. Beier, D. Woll, K.-J. Boller, and R. Wallenstein, “Second-harmonic generation of the output of an AlGaAs diode oscillator-amplifier system in critically phase matched LiB3O5 and b-BaB2O4,” Appl. Phys. Lett., vol. 71, pp.1-3, 1997.
[2] S. G. Lambert, W. L. Casey, “Laser Communication in Space,” Boston, MA: Artech, 1995.
[3] P. Loosen, H.-G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnho, St. Kasperowsky, and R. vor dem Esche, “High-power diode lasers and their direct industrial applications,” SPIE Proc.2382, pp.75-78, 1995.
[4] J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quant. Electron, vol.28, pp.623-645, 1996.
[5] C. Smudzinski, D. Botez, L. J. Mawst, A. Bhattacharya, M. Nesnidal, and R.F. Nabiev, “Three-core arrow-type diode laser, novel high-power, single-mode device, and effective master oscillator for flared antiguided MOPAs,” IEEE J. Select. Topics Quant. Electron, vol. 1, pp.129-137, 1995.
[6] S. D. de Mars, K. M. Dzurko, R. J. Lang, D. F. Welch, D. R. Scifres, and A. Hardy, “Angled grating distributed-feedback laser with 1W single-mode, diffraction-limited output at 980nm,” Techn. Digest CLEO 96, pp.77-78, 1996.
[7] M. Mikulla, “Improved beam quality for high-power tapered diode lasers with LMG eptitaxial layer structures,” SPIE Proc.3284, pp.72-79, 1998.
[8] I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed feedback lasers,” J. Appl. Phys., vol.88, pp.6997, 2000.
[9] M. Fukuda, “Reliability and degradation of semiconductor lasers and LEDs”, Boston, MA: Artech, 1991.
[10] M. A. Emanuel, N. W. Carlson, “High-efficiency AlGaAs-based laser at 808nm with large transverse spot size,” IEEE Photon. Technol. Lett., vol. 8, pp.1291-1293, 1996.
[11] Jie-Wei Lai and Ching-Fuh Lin, “Carrier diffusion effect in flared semiconductor-laser amplifier,” IEEE J. Quantum Electron. 34, pp.1247-1256, 1998.

Chapter2
[1] S. Shepard, “Optical Networking Crash Course,” McGraw-Hill, NY., pp.120, 2001.
[2] T. E. Stern, and K. Bala, “Multiwavelength optical networks,” Chap. 4, Addison-Weslwy, MA, 1999.
[3] S. L. Chuang, “Physics of Optoelectronic Devices,” Chap. 2, John Wiley & Sons, New York, 1995.
[4] Osamu Wada and Hideki Hasegawa, “InP-Based Materials and Devices Physics and Technology,” New York, Wiley, 1999.
[5] P. Ghattacharya, “Properties of Quantum Wells and Superlattices,” IEE, London.
[6] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Daplus, “Quantum-Well heterostructure laser,” IEEE J. Quantum Electron., QE16, pp. 170-186, 1980.
[7] W. T. Tsang, “A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam,” Appl. Phys. Let. 39, p. 134-137, 1981.
[8] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers,” Van Nostrand Reinhold, NY.
[9] T. R. Hayes, “Dry etching of In-based semiconductors,” Indium Phosphide and Related Materials: Processing, Technology, and Devices, Chap.8, pp. 284-293, Artech House, MA, 1992.
[10] H. Kogelnik, “Theory of optical waveguides”, Guided-Wave Optoelectronics, T. Tamir, ed., Chap. 2, pp. 7-88, Springer-Verlag, Berlin, 1988.

Chapter3
[1] S. D. de Mars, K. M. Dzurko, R. J. Lang, D. F. Welch, D. R. Scifres, and A. Hardy, “Angled grating distributed-feedback laser with 1W single-mode diffraction-limited output at 980nm,” Techn. Digest CLEO 96, pp. 77-78, 1996.
[2] Robert J. Lang, Ken Dzurko, Amos A. Hardy, and Scott Demars, “Theory of grating-confined broad-area lasers,” IEEE Journal of Quantum Electronics, vol.34, 1998.
[3] I. Vurgaftman, W. W. Bewley, R. E. Bartolo, C. L. Felix, M. J. Jurkovic, J. R. Meyer, M. J. Yang, H. Lee and R. U. Martinelli, “Far-field characteristics of mid-infrared angled-grating distributed feedback lasers,” J. Appl. Phys., vol. 88, pp. 6997, 2000.
[4] K. M. Dzurko, R. J. Lang, D. F. Welch, D. R. Scifres, and A. Hardy, “650 mW cw single-mode operation of angled grating distributed feedback lasers,” Lasers and Electro-Optics Society Annual Meeting 8th Annual Meeting Conference Proceedings, vol. 2, p. 400–401, 1995.
[5] L. J. Mawst, D. Botez, C. Zmudzinski, C. Tu, “0.3 W CW single-spatial-mode operation from large-core ARROW-type diode lasers,” Electronics Letters , Vol. 28, p.410–411, 1992.
[6] J. S. Osinski, K. M. Dzurko, J. S. Major, R. A. Parke, D. F. Welch, “ Electronically tunable, 1 W CW, diffraction-limited monolithic flared amplifier-master oscillator power amplifier (MFA-MOPA),” Semiconductor Laser Conference, 1994., 14th IEEE International, p.161–162, 1994.
[7] D.Mehuys, D. Welch and D. Scifres “1W CW, Diffraction-limited, Tunable External-Cavity Semiconductor Laser ,” Electro. Lett. Vol. 29, No. 14, 1993.
[8] D. Mehuys, D. Welch, and L. Goldserg, “2W CW Diffraction-limited Tapered Amplifier With Diode Injection,” Electron. Lett. Vol. 28, No. 8, 1992.
[9] W. D. Herzog, B. B. Goldberg, and M. S. Unlu, “Beam steering in narrow-stripe high-power 980-nm laser diodes,” IEEE Photonics Technology Letters, Vol. 12, No. 12 , 2000.

Chapter4
[1] Peter J. A. Thijs, Luuk F. Tiemeijier, P. I. Kuindersma, J. J. M. Binsma, Teus Van Dongen, “High-performance 1.5μm wavelength InGaAs-InGaAsP strained quantum well lsers and amplifiers,” IEEE Journal of Quantum Electronics, pp.1426-1439, 1991.
[2] Sadao Adachi, “ Chemical Etching of InP and InGaAsP/InP,” Journal of Electrochem. Soc., pp.609-613, 1982.
[3] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd ed., Chap. 2, Van Nostrand Reinhold, New York, 1995.
[4] J. Braithsaite, M. Silver, V. A. Wilkinson, E. P. O’Reilly, and A. R. Adams, “Role of radiative and nonradiative processes on the temperature sensitivity of strained and unstrained 1.5μm InGaAs(P) quantum well lasers,” Appl. Phys. Lett., vol. 67, pp. 1073-1075, 1998.
[5] J. Piprek, D. Babic, and J. E. Bowers, “Simulation and analysis of double-fused 1.55μm vertical-cavity lasers,” J. Appl. Phys., vol.81, pp. 3382-3390, 1997.
[6] L. J. P. Ketelsen, and R. F. Kazarinov, “Carrier loss in InGaAsP-InP lasers grown by hydride CVD,” IEEE J. Quantum Electron., vol. 34, pp. 811-813, 1995.
[7] Y. Yoshida, H. Watanabe, K. Shibata, A. Takemoto, and H. Higuchi, “Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulators,” IEEE J. Quantum Electron., vol. 34, pp. 1257-1262, 1998.

Chapter5
[1] H.-P. Gauggel, H. Artmann, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tenability of GaInP-AlGaInP DFB lasers with superstructure gratings,” IEEE Photon. Technol. Lett., vol. 9, pp. 1824-1834, June 1993.
[2] Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating DBR lasers,” IEEE J. Quantum Electron., vol. 34, pp. 729-741, 1993.
[3] M. Reinhardt, M. Forchel, and J. L. Gentner, “Wide-range-tunable semiconductor lasers,” Appl. Phys. Lett., vol.79, pp.2684-2686, 2001.
[4] V. Mikhaelashvili, N. Tessler, R. Nagar, G. Eisenstein, A. G. Dentai, S. Chandrasakhar, and C. H. Joyner, “Temperature dependent loss and overflow effects in quantum well lasers,” IEEE Photon. Technol. Lett., vol. 6, pp.1293-1296, 1994.
[5] D. A. Ackerman, G. E. Shtengel, M. S. Hybersten, P. A. Morgan, R. “Determining T0 in 1.3μm semiconductor lasers”, IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 250-262, 1995.
[6] J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron., vol. 36, pp. 366-374, 2000.
[7] T. Saitoh and T. Mukai, “Traveling wave semiconductor laser amplifiers,” Coherence, Amplification, and Quantum Effects in Semiconductor Lasers, Chap. 7, Y. Yamamoto, editor, John Wiley & Sons, New York, 1990.
[8] M. C. Amann and J. Buus, “Tunable Laser Diodes,” Chap. 8, pp. 207-209, 1998.
[9] B. L. Lee and C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett., vol. 10, pp. 322-324, 1998.
[10] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, 2nd ed., Chap. 3, pp. 74-146, Van Nostrand Reinhold, New York, 1995.
[11] T. Keating, X. Jin, S. L. Chuang, K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron., vol. 35, pp. 1526-1534, 1999.
[12] M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, “Broad-band continuously tunable all-fiber DFB lasers,” IEEE Photonics Technology Letters, vol. 14, pp. 21-23, 2002.
[13] J. M. Oh, H. B. Choi, D. Lee, S. J. Ahn, “Incorporation of a fiber Bragg grating to improve the efficiency of a 1580-nm-band tunable fiber ring laser,” Optics Letters, vol. 27, pp. 589-591, 2002.
[14] M. Laroche, W. A. Clarkson, J. K. Sahu, J. Nilsson, Y. Jeong, “High power cladding-pumped tunable Er-Yb fiber laser,” Proc. Conference on Lasers and Electro-Optics 2003, Baltimore, USA, 2003, paper CWO5.
[15] J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P.W. Turner, W.A. Clarkson, A.B. Grudinin, “High-power and tunable operation of erbium-ytterbium Co-doped cladding-pumped fiber lasers,” IEEE Journal of Quantum Electronics , Vol. 39, No 8, pp 987-994, 2003.
[16] M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, M. Ibsen, “Fiber Bragg grating compression-tuned over 110 nm,” Electronics Letters, Vol. 39, No. 6, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top