(3.236.118.225) 您好!臺灣時間:2021/05/16 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威廷
研究生(外文):Wei-Ting Chen
論文名稱:全光學式雷射電漿加速器的發展
論文名稱(外文):Development of An All Optical Laser-Plasma Accelerators
指導教授:易富國
指導教授(外文):Fu-Guo Yee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:62
中文關鍵詞:雷射電漿波加速器
外文關鍵詞:acceleratorplasma wavelaser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射電漿加速器是利用雷射脈衝在電漿中激發的電漿波來加速電子。
雷射電漿加速器可以提供遠超過傳統射頻線性加速器的加速電場,在電子密度為 10^{18} cm^{-3} 時,
其加速電場最大約可達 100 GeV/m ,是現今射頻線性加速器的1000倍。所以雷射電漿加速器具有成為下一代加速器的潛力。
在1979年, Tajima和Dawson就已提出了雷射電漿波加速器(laser wakefield accelerator, LWFA)的概念,當時礙於科技的限制,
無法產生時寬短而強度高的雷射脈衝,故當時只能研究強度和脈衝時寬要求低的電漿拍頻加速器(plasma beat-wave accelerator, PBWA)。
利用飛秒雷射脈衝技術以及 1980 年代發明啾頻脈衝放大術,
我們可以產時寬短(數十飛秒)而且高必v(~ 10^{19} W/cm^2)的雷射脈衝。這提供了我們深入研究雷射電漿加速器的工具。

本論文可分為兩部分,第一部份是背景知識的介紹,包含了雷射電漿加速器的發展歷史和原理介紹。第二部分是實驗部分,
我們量測了電漿波所加速的電子束的性質,發現電子束的發散角約為1.8度,
而估算的橫向發散強度(transverse emittance)約為 0.1 pi-mm-mrad , 比傳統射頻線性加速器要小了10倍。
量測電子的能譜,觀察到電子的能量最高可以到達 45 MeV。若利用退相距離估算加速梯度,則加速梯度約為 2.2 GeV/cm ,
比傳統射頻加速器的加速梯度大了約 2000 倍。此外,
我們更進一步引入和主脈衝重疊傳播的預脈衝,藉由控制脈衝間的時間間距控制電子的注入,進而控制加速電子數目以及電子束發散角,
這是光學注入雷射加速器(LILAC)的示範。此外,
從拉曼前向散射訊號對預脈衝時間延遲的關係,
我們驗證了拉曼前向散射的起始電漿波是來自游離誘發電漿波並且實驗上示範了交互調變雷射電漿加速器。
In laser-plasma accelerators, the electrons are accelerated by the plasma wave generated by the laser pulses.
For its large accelerating gradient, Laser-plasma accelerators have potential to be the next generation accelerators.
For example, an accelerating gradient of 100 GeV/m can be sustained for 10^{18} cm^{-3} plasma density.
Such an accelerating gradient is three orders of magnitude larger than radio frequency linear accelerators.
The concept of laser-plasma accelerators is first prposed by Tajima and Dawson in 1979.
The technology at that time could not produce laser pulses with short duration and high intensity and
only plsma beat wave accelerator can be studied through its lower requirement of pulse duration and intensity.
The invention of chirp pulse amplification technic in 1980''s allow people to produce pulses with duration
of severel tens femto second and
peak power of multi-terawatt. With such pulses, we are able to study laser-plasma accelerators in depth.

There are two main part in this thesis. In the first part, I will give a brief history of the development and some
background knowledge of laser-plasma accelerators. In the second part, I will show the experimental results.
We measured the properties of the accelerated electron beam. The electron beam divergence angle is 1.8 degree and the
estimated transverse emittance is less than 0.1 pi-mm-mrad which is better than the state-of-the-art electron gun.
Electron energy of 45 MeV was observed, and the accelerating gradient is 2.2 GeV/cm which is almost 2000 times
larger than conventional accelerators. Furthermore, we introduced a copropagating prepulse in our experiment.
We were able to control the electron injection and therefore we can control
the electron number and electron beam divergence by changing the prepulse timing. This is demonstration of laser-inject-laser-accelerator.
Also, we indentified that the seed plasma wave of Raman forward scattering comes mainly from ionization induced plasma wave
from the dependence of Raman signal on prepulse timing and experimentally demonstrated cross-modulated laser wakefield accelerator.
目次

摘要 iii

Abstract v

1. 緒論 1
1.1 雷射電漿波電子加速器的優勢••••••••• 1
1.2 雷射電漿波電子加速器的發展歷史••••••• 2
1.3 十兆瓦雷射驅動光源••••••••••••• 4

2. 雷射電漿波電子加速器的概述 7
2.1 電漿的電磁特性••••••••••••••• 7
2.2 電漿波如何加速電子••••••••••••• 10
2.3 電漿波的產生•••••••••••••••• 13
2.4 雷射電漿波加速器(LWFA)••••••••••• 14
2.5 電漿拍頻加速器(PBWA)•••••••••••• 16
2.6 自調變雷射電漿加速器(SM-LWFA) ••••••• 18
2.7 電子能量的限制••••••••••••••• 21

3. 以拉曼前向散射產生電漿波 23
3.1 拉曼前向散射的原理••••••••••••• 23
3.2 拉曼前向散射的起始電漿波•••••••••• 24
3.3 拉曼前向散射的性質••••••••••••• 26

4. 電子束性質的量測 29
4.1 拉曼前向散射中的電子捕捉現象•••••••• 29
4.2 電子束發散角的量測••••••••••••• 30
4.3 電子束能譜的測量•••••••••••••• 32

5. 同步注入電子 37
5.1 以雷射脈衝注入電子的提案 37
5.1.1 拉曼背向散射注入電子••••••••• 37
5.1.2 雷射脈衝橫向注入電子••••••••• 38
5.1.3 雷射脈衝對撞注入電子••••••••• 40
5.2 預脈衝對拉曼背向散射注入電子的影響 ••••• 41

結論與展望 50
[1] T. Tajima and J. M. Dawson. Laser electron accelerator.
Phys. Rev. Lett., 43:267, 1979.
[2] C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter. Relativistic
plasma wave excitation by collinear optical mixing.
Phys. Rev. Lett., 54:2343, 1985.
[3] C. E. Clayton, M. J. Everett, A. Lal, D. Gorden K. A. Marsh,
and C. Joshi. Acceleration and scatteribng of injected electrons
in plasma beat wave accelerator experiments. Phys.
Plasmas, 1:1753, 1994.
[4] D. Strickland and G. Mourou. Compression of ampli ed
chirped optical pulses. Opt. Commun., 56:219, 1985.
[5] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W.
Falcone. Subpicosecond, electromagnetic pulses from intense
laser-plasma interaction. Phys. Rev. Lett., 71:2725, 1993.
[6] J. R. Marques, J. P. Geindre, F. Amirano , P. Audebert,
J. C. Gauthier, A. Antonetti, , and G. Grillon. Temporal and
spatial measurements of the electron density perturbationproduced in the wake of an ultrashort laser pulse. Phys. Rev.
Lett., 76:3566, 1996.
[7] M. C. Downer, C. W. Siders, D. F. Fisher, S. P. LeBlanc,
B. Rau, E. Gaul, T. Tajima, A. Babine, A. Stepanov, and
A. Sergeev. Laser wake eld photon accelerator: Optical diagnostics
for the laser wake eld accelerator based on longitudinal
interferomertry. Bullet. Amer. Phys. Soc., 40:1862,
1995.
[8] K. Nakajima, T. Kawakubo, H. Nakanishi, A. Ogata,
Y. Kitagwa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki,
K. Yamakawa, T. Zhang, Y. Yata, D. Fisher, M. Downer,
T. Tajima, Y. Sakawa, T. Shoji, N. Yugami, and Y. Nishida.
Proof-of-principle experiments of laser wake eld acceleration
using a 1 ps 10 TW Nd:glass laser. Proc. AIP Conf. Advanced
Accelerator Concept, 335:144, 1995.
[9] E. Esarey, A. Ting, and P. Sprangle. Optical guiding and
beat-wave phase velocity control in the plasma beat-wave
accelerator. Proc. AIP Conf. Advanced Accelerator Concept,
193:71, 1989.

[10] J. Krall, A. Ting, E. Esarey, P. Sprangle, and G. Joyce. Enhanced
acceleration in a self-modulated laser wake eld accelerator.
Phys. Rev. E, 48:2157, 1993.
[11] C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis, and N. A. Ebrahim. Forward raman instability and electron acceleration.
Phys. Rev. Lett., 47:1285, 1981.
[12] C. Coverdale, C. B. Darrow, C. D. Decker, W. B. Mori, K. C.
Tzeng, K. A. Marsh, C. E. Clayton, and C. Joshi. Propagation
of subpicosecond laser pulses through underdense plasmas.
Phys. Rev. Lett., 74:4659, 1995.
[13] A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton,
C. Joshi K. A. Marsh, V. Malka, C. B. Darrow, C.Danson,
D. Neely, and F. N. Walsh. Electron acceleration from the
breaking of relativistic plasma waves. Nature, 337:606, 1995.
[14] R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter.
Electron acceleration by a laser wake eld in a relativistically
self-guided channel. Phys. Rev. Lett., 78:3125, 1997.
[15] V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy,
J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka,
S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau,
J.-N. Scheurer, B. Walton, and A. E. Dangor. Electron acceleration
by a wake eld forced by an intense ultrashort laser
pulse. Science, 298:1596, 2002.
[16] E. Esarey and M. Pillo . Trapping and acceleration in nonlinear
plasma waves. Phys. Plasmas, 2:1432, 1995.
[17] E. Esarey, P. Sprangle, J. Krall, and A. Ting. Overview of plasma-based accelerator concepts. IEEE Trans. Plasma
Sci., 24:252, 1996.
[18] E. Esarey, , A. Ting, P. Sprangle, D. Umstadter, and X. Liu.
Nonlinear analysis of relativistic harmonic generation by intense
lasers in plasmas. IEEE Trans. Plasma Sci., 21:95,
1993.
[19] M. N. Rosenbluth and C. S. Liu. Excitation of plasma waves
by two laser beams. Phys. Rev. Lett., 29:701, 1972.
[20] C. M. Tang, P. Sprangle, and R. Sudan. Excitation of plasma
waves in the plasma beat-wave accelerator. Appl. Phys. Lett.,
45:375, 1984.
[21] D. Umstadter, E. Esarey, , and J. Kim. Nonlinear plasma
waves resonantly driven by optimized laser pulse trains.
Phys. Rev. Lett., 72:1224, 1994.
[22] D. Umstadter, J. Kim, E. Esarey, E. Dodd, and T. Neubert.
Resonantly laser-driven plasma waves for electron acceleration.
Phys. Rev. E, 51:3484, 1995.
[23] T. M. Antonsen, Jr., and P. Mora. Self-focusing and raman
scattering of laser pulses in tenuous plasmas. Phys. Rev.
Lett., 69:2204, 1992.
[24] P. Sprangle, E. Esarey, J. Krall, and G. Joyce. Propagation
and guiding of intense laser pulses in plasmas. Phys. Rev.
Lett., 69:2[25] N. E. Andreev, L. M. Gorbunov, V. I. Kirsannov, A. A.
Pogosova, , and R. R. Ramazashviki. Resonant excitation
of wake eld by laser pulse in a plasma. JETP Lett., 55:571,
1992.
[26] W. B. Mori. The physics of the nonlinear optics of plasmas at
relativistic intensities for short-pulse lasers. IEEE J. Quant.
Electr., 33:1942, 1997.
[27] Z. M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, , and
J. Zhang. Generation of high-amplitude plasma waves for
particle acceleration by cross-modulated laser wake elds.
Phys. Plasmas, 9:3147, 2002.
[28] William L. Kruer. The physics of laser plasma interactions.
Addison-Wesley Publishing Company, 1988.
[29] N. E. Andreev, L. M. Girbunov, V. I. Kirsanov, A. A.
Pogosova, and A. S. Sakharov. Theory of hte resonance
modulation instability of short laser pulses in a plasma and
plasma channels. Plasma Phys. Rep., 22:379, 1996.
[30] W. B. Mori and T. Katsouleas. Ponderomotive force of a
uniform electromagnetic wave in a time varying dielectric
medium. Phys. Rev. Lett., 69:3495, 1992.
[31] C. D. Decker, W. B. Mori, and T. Katsouleas. Partical-incell
simulations of raman forward scattering from short-pulse
high-intensity lasers. Phys. Rev. E, 50:R3338, 1994.200, 1992.
[32] W. P. Leemans, P. Catravas, E. Esarey, C. G. R. Geddes,
C. Toth, R. Trines, C. B. Schroeder, B. A. Shadwick,
J. van Tilborg, and J. Faure. Electron-yield enhancement
in a laser-wake eld accelerator driven by asymmetric laser
pulses. Phys. Rev. Lett., 89:174802, 2002.
[33] D. F. Gordon, B. Ha zi, P. Sprangle, R. F. Hubbard, J. R.
Penano, and W. B. Mori. Seeding of the forward raman
instability by ionization fronts and raman backscatter. Phys.
Rev. E, 64:46404, 2001.
[34] T.-W. Yau, C.-J. Hsu, H.-H. Chu, Y.-H. Chen, C.-H. Lee,
J. Wang, and S.-Y. Chen. Dependence of relativistic selfguiding
and raman forward scattering on duration and chirp
of an intense laser pulse propagating in a plasma. Phys.
Plasmas, 9:391, 2002.
[35] Y.-H. Chen. Time-Resolved Measurement of Laser-Plasma
Interaction, Thesis for degree of M. S. Graduate Institute
of Electro-Optical Engineering, National Taiwan University,
2002.
[36] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and
R. Wagner. Nonlinear optics in relativistic plasmas and laser
wake eld acceleration of electrons. Science, 273:472, 1996.
[37] C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard,
B. Ha zi, H. R. Burris, C. Manka, and P. Sprangle. Electron trapping in self-modulated laser wake elds by raman
backscatter. Phys. Rev. Lett., 79:3909, 1997.
[38] P. Bertrand, A. Ghizzo, S. J. Karttunen, T. J. H. Pattikangas,
R. R. E. Salomaa, and M. Schoucri. Generation of ultrafast
electrons by simultaneous stimulated raman backward
and forward scattering. Phys. Rev. E, 49:5656, 1994.
[39] K-C. Tzeng, W. B. Moria, and T. Katsouleas. Electron beam
characteristics from laser-driven wave breaking. Phys. Rev.
Lett., 79:5258, 1997.
[40] D. Umstadter, J. K. Kim, and E. Dodd. Laser injection of
ultrashort electron pulses into wake eld plasma waves. Phys.
Rev. Lett., 76:2073, 1996.
[41] E. Dodd, J. K. Tim, and D. Umstadter. Ultrashort-pulse relativistic
electron gun/accelerator. Proc. AIP Conf. Advanced
Accelerator Concept, 398:106, 1997.
[42] P. B. Corkum, N. H. Bernett, and F. Brunel. Abovethreshold
ionization in the long wavelength limit. Phys. Rev.
Lett., 62:1259, 1989.
[43] C. I. Moore, A. Ting, S. J. McNaught, J. Oiu, H. R. Burris,
and P. Sprangle. A laser-accelerator injector based on laser
ionization and ponderomotive acceleration of electrons. Phys.
Rev. Lett., 82:1688, 1999.
[44] E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and
P. Sprangle. Electron injection into plasma wake elds by
colliding laser pulses. Phys. Rev. Lett., 79:2682, 1997.
[45] V. Malka, C. Coulaud, J. P. Geindre, V. Lopez, Z. Najmudin,
D. Neely, and F. Amirano . Characterization of neutral density
pro le in a wide range of pressure of cylindrical pulsed
gas jets. Rev. Scient. Inst., 71:2329, 2000.
[46] A. Pukhov, Z.-M. Sheng, and J. Meyer ter Vehn. Particle
acceleration in relativistic laser channels. Phys. Plasmas,
6:2847, 1999.
[47] W. P. Leemans, IEEE Member, R. W. Schoenlein, Member,
P. Volfbeyn IEEE, A. H. Chin, T. E. Glover, P. Balling,
M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and IEEE
C. V. Shank, Fellow. Interaction of relativistic electrons
with ultrashort laser pulses: Generation of femtosecond xrays
and microprobing of electron beams. IEEE J. Quant.
Electr., 33:1925, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top