(3.238.96.184) 您好!臺灣時間:2021/05/18 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:駱文
研究生(外文):Wen Lo
論文名稱:應用雙光子顯微術與化學增益法於觀測量子點滲透皮膚之路徑
論文名稱(外文):Utilizing Multiphoton Microscopy to Monitor Chemically Enhanced Transdermal Delivery Pathways of Luminescent Quantum Dots
指導教授:董成淵
指導教授(外文):Chen-Yuan Dong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:46
中文關鍵詞:量子點雙光子皮膚脈衝雷射顯微術油酸藥物傳遞
外文關鍵詞:multiphotonskinchemically enhancedquantum dotsmicroscopytwo-photonoleic acidtransdermal deliveryti-sapphire laser
相關次數:
  • 被引用被引用:4
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙光子顯微術 (Two-photon microscopy)具有非侵入性檢測、重構三維影像能力並且可以深入生物組織的特點,近年來已廣泛應用於各種生醫研究中,在我的研究中,我利用雙光子顯微術的這種特點研究透過皮膚藥物傳遞的路徑與機制。
透過皮膚遞送藥物 (Transdermal drug delivery) 有著許多優點,這種非侵入性的藥物傳遞方式有著數種優於口服或靜脈注射之處,諸如:避免藥物在經過消化道遭受破壞、維持血液中藥物濃度穩定、較易應用於較長期的療程、減低藥物用量,甚至還有增加病患配合度之效。關於透過皮膚的藥物傳遞,雖然已有許多不同的機制模型與研究,關於傳遞效率增益的研究更是不計其數,縱使有許多實驗間接證實利用一些物理性或化學性的手段,增加了藥物傳遞的效率,然而我們對這些增益法是否或是如何其傳遞之路徑與機制的了解仍然有限,關於藥物分子大小在藥物傳遞中所占地位亦一無所知。透過雙光子顯微術,我們將有機會直接監測透過皮膚傳遞所選定的不同大小分子的傳遞路徑,並且研究利用油酸分子增加藥物穿透皮膚效率的機制。
研究中用於模擬藥物的類分子-量子點 (Quantum dots)- 是由半導體材料所構成的奈米粒子,而這種大小尺度與許多重要的生物巨分子十分相似。近年來所研發出的藥物有很大一部分是蛋白質分子或胜肽分子,透過皮膚將這些藥物送入病患體內可能是較佳的作法,利用量子點與這些巨分子大小的相似性,同時我們可以修飾量子點的表面化學使其可與特定的組織或細胞結合,因此運用量子點作為模擬透過皮膚所傳遞的藥物,將不失為一種研究藥物傳遞之路徑與機制的好方法。此外,量子點在光學性質上具有數種優於傳統螢光染劑的特點,如:發射光譜較窄、可調變發射光譜、較穩定的光化學性質、較長的半生期。若能透過皮膚將之傳送入生物體內,將可大幅增進生物醫學影像的品質。
基於上述的原因,我的論文內容將比較水溶性量子點與水溶性螢光分子在皮膚中傳遞的路徑差異,以及油酸在傳遞過程中影響量子點或螢光分子的方式。


Luminescent quantum dots (QDs) are attractive fluorescent probes in bioimaging application. Broad excitation spectrum, narrow and tunable emission spectrum, high photochemical stability and chemical modifiability are among the desirable properties of QDs. In this work, we investigate the feasibility of administering QDs (7 nm in size) through transdermal delivery pathway using multiphoton fluorescence imaging. Our results show that QDs of this size range can be effectively delivered through intercellular pathways using the chemical enhancer oleic acid. This work has implications for understanding the transport of important biological macromolecules.
Our experiments infer two important results. First QDs can hardly transport into skin without the chemical enhancer oleic acid. Furthermore, QDs deliver primarily through intercellular pathways. In contrast, fluoresein molecules deliver through both intercellular and intracellular region.
Our results imply that the size of nanoparticles may dominate the nature of transdermal transport mechanism and in the future, we plan to investigate the mechanism by manipulating the size of nanoparticles and their surface chemistry.


UTILIZING MULTIPHOTON MICROSCOPY TO MONITOR CHEMICALLY ENHANCED TRANSDERMAL DELIVERY PATHWAYS OF LUMINESCENT QUANTUM DOTS 1
CHAPTER 1 INTRODUCTION 4
1-1 Advantages of transdermal drug delivery and enhanced methodologies 4
1-2 Transdermal delivery of quantum dots 5
1-3 Introduction to multiphoton microscopy 7
CHAPTER 2 SKIN AND TRANSDERMAL DELIVERY 9
2-1 The structure of skin19 9
2-2 Several possible delivery pathway20-22 12
CHAPTER 3 QUANTUM DOTS AS BIOLOGICAL LABELS 15
3-1 Basic physics of quantum dots 15
3-2 Photostability and surface chemistry 17
CHAPTER 4 MULTIPHOTON MICROSCOPY 19
4-1 The fundamentals of two-photon excitation 20
4-2 The characteristics and the advantages of multiphoton microscopy 25
CHAPTER 5 EXPERIMENTAL SETUP 28
5-1 The setup of multiphoton microscope 28
5-2 Fluorescent dyes and quantum dots 30
5-3 Delivery methods 33
CHAPTER 6 RESULTS AND DATA ANALYSIS 35
CHAPTER 7 CONCLUSION 41
CHAPTER 8 ACKNOWLEDGEMENT 42
CHAPTER 9 REFERENCE 44



1.Lambert, W. J., Higuchi, W. I., Knutson, K. & Krill, S. L. Effects of long-term hydration leading to the development of polar channels in hairless mouse stratum corneum. J Pharm Sci 78, 925-8 (1989).
2.Mitragotri, S. et al. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. Journal of Pharmaceutical Sciences 89, 892-900 (2000).
3.Lambert, W. J., Higuchi, W. I., Knutson, K. & Krill, S. L. Dose-dependent enhancement effects of azone on skin permeability. Pharm Res 6, 798-803 (1989).
4.Marjukka Suhonen, T., Bouwstra, J. A. & Urtti, A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J Control Release 59, 149-61 (1999).
5.Walters, K. A. & Hadgraft, J. Pharmaceutical skin penetration enhancement (M. Dekker, New York, 1993).
6.Mitragotri, S., Edwards, D. A., Blankschtein, D. & Langer, R. Mechanistic Study of Ultrasonically-Enhanced Transdermal Drug-Delivery. Journal of Pharmaceutical Sciences 84, 697-706 (1995).
7.Guy, R. H. et al. Iontophoresis: electrorepulsion and electroosmosis. Journal of Controlled Release 64, 129-132 (2000).
8.Higuchi, W. I., Li, S. K., Ghanem, A. H., Zhu, H. G. & Song, Y. Mechanistic aspects of iontophoresis in human epidermal membrane. Journal of Controlled Release 62, 13-23 (1999).
9.Choi, E. H., Lee, S. H., Ahn, S. K. & Hwang, S. M. The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Skin Pharmacology and Applied Skin Physiology 12, 326-335 (1999).
10.Tsong, T. Y. Electroporation of Cell-Membranes. Biophysical Journal 60, 297-306 (1991).
11.Pliquett, U. Mechanistic studies of molecular transdermal transport due to skin electroporation. Advanced Drug Delivery Reviews 35, 41-60 (1999).
12.Bommannan, D. B., Tamada, J., Leung, L. & Potts, R. O. Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm Res 11, 1809-14 (1994).
13.Jadoul, A., Lecouturier, N., Mesens, J., Caers, W. & Preat, V. Transdermal alniditan delivery by skin electroporation. J Control Release 54, 265-72 (1998).
14.Mitragotri, S., Blankschtein, D. & Langer, R. Transdermal drug delivery using low-frequency sonophoresis. Pharmaceutical Research 13, 411-420 (1996).
15.Tang, H., Mitragotri, S., Blankschtein, D. & Langer, R. Theoretical description of transdermal transport of hydrophilic permeants: Application to low-frequency sonophoresis. Journal of Pharmaceutical Sciences 90, 545-568 (2001).
16.Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 21, 47-51 (2003).
17.Denk, W., Strickler, J. H. & Webb, W. W. 2-Photon Laser Scanning Fluorescence Microscopy. Science 248, 73-76 (1990).
18.So, P. T. C., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering 2, 399-429 (2000).
19.Ross, M. H., Kaye, G. I. & Romrell, L. J. Histology : a text and atlas (Williams & Wilkins, Baltimore, 1995).
20.Prausnitz, M. R., Mitragotri, S. & Langer, R. Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery 3, 115-124 (2004).
21.Finnin, B. C. & Morgan, T. M. Transdermal penetration enhancers: Applications, limitations, and potential. Journal of Pharmaceutical Sciences 88, 955-958 (1999).
22.Elias, P. M. & Feingold, K. R. Lipids and the Epidermal Water Barrier - Metabolism, Regulation, and Pathophysiology. Seminars in Dermatology 11, 176-182 (1992).
23.Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996).
24.Williams, A. C. & Barry, B. W. Skin Absorption Enhancers. Critical Reviews in Therapeutic Drug Carrier Systems 9, 305-353 (1992).
25.Suemune, I., Uesugi, K., Suzuki, H., Nashiki, H. & Arita, M. Low-dimensional II-VI semiconductor structures: ZnSe/MgS superlattices and CdSe self-organized dots. Physica Status Solidi B-Basic Research 202, 845-856 (1997).
26.Alhassid, Y. The statistical theory of quantum dots. Reviews of Modern Physics 72, 895-968 (2000).
27.Wu, X. Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (vol 21, pg 41, 2003). Nature Biotechnology 21, 452-452 (2003).
28.Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. Journal of Physical Chemistry B 105, 8861-8871 (2001).
29.Yamane, M. A., Williams, A. C. & Barry, B. W. Effects of Terpenes and Oleic-Acid as Skin Penetration Enhancers Towards 5-Fluorouracil as Assessed with Time - Permeation, Partitioning and Differential Scanning Calorimetry. International Journal of Pharmaceutics 116, 237-251 (1995).
30.Yu, B., Kim, K. H., So, P. T. C., Blankschtein, D. & Langer, R. Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. Journal of Investigative Dermatology 120, 448-455 (2003).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top