(3.236.118.225) 您好!臺灣時間:2021/05/16 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宇喬
研究生(外文):U-Kio Chan
論文名稱:Proteasome抑制劑MG132引發肺癌細胞株H1299細胞凋亡機轉的探討
論文名稱(外文):Mechanism of Proteasome Inhibitor MG132-Induced Apoptosis in Non-Small Cell Lung Cancer Cell Line (H1299)
指導教授:康照洲康照洲引用關係
指導教授(外文):Jaw-Jou Kang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:132
中文關鍵詞:細胞凋亡細胞週期粒線體抑制劑
外文關鍵詞:MG132proteasome inhibitormitochondriaapoptosiscell cycleBcl-2 family
相關次數:
  • 被引用被引用:1
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
在真核細胞中,ubiquitin-proteasome pathway 為一主要的蛋白質分解系統。此路徑不但負責一些短生命期及長生命期蛋白質的分解,對於一些腫瘤抑制因子、轉錄因子及細胞週期的調控蛋白亦具同樣作用。改變這些蛋白質的分解,對於腫瘤的生長及細胞凋亡有著深遠的影響。
在本篇研究中,主要是探討26S proteasome 抑制劑MG132 對於p53缺乏的 human non-small cell lung cancer (NSCLC)-H1299的細胞凋亡作用。細胞在處理MG132後,會造成細胞產生reactive oxygen species (ROS)、G2/M arrest 及細胞凋亡,同時亦使細胞內之細胞週期調控蛋白質p21Waf/Cip1 及p27Kip1 表現增加,而對於抗細胞凋亡的bcl-2家族蛋白質,則會使其表現量減少。而以抗氧化劑如Glutathione、N-acetylcysteine 或 catalase抑制 ROS 的生成,都能阻止MG132引起的G2/M arrest ,但對於細胞凋亡則不具影響作用,此結果顯示,ROS 的產生是造成MG132引起G2/M arrest的原因。然而,以siRNA transfection的方式減低細胞內p21 Waf/Cip1 的表現卻不足以阻止MG132引起的 G2/M arrest,顯示還有其他路徑參與此調控作用。
在西方墨點法的結果亦顯示,MG132 能夠活化stress kinase JNK 及引起c-Jun磷酸化,而以JNK-AP-1路徑專一性抑制劑 Sp600125處理細胞,則可有效抑制MG132 引起的c-Jun 磷酸化,但卻只能輕微減少p21 Waf/Cip1的表現。另外,以 Sp600125處理細胞、或以p21 Waf/Cip1siRNA 及 p21 Waf/Cip1 antisense oligonucleotide transfection的方式,都會增加MG132引起的細胞凋亡現象,這樣的結果說明了,不管是JNK 活化或p21的表現增加,都並沒有參與MG132引起的細胞凋亡作用,相反地,他們可能都在此作用中扮演著保護的角色。
除此以外,MG132亦會導致cytochrome c的釋出、caspase-3活化,繼而使poly-ADP ribose polymerase(PARP)分解。而以caspase之廣效性抑制劑z-VAD-FMK 處理,則能回復MG132引起的細胞凋亡作用。所有這些結果顯示,在H1299細胞中,因proteasome抑制所引起的細胞凋亡作用,極可能是透過粒線體的訊息傳遞路徑來達成,同時,caspases在整個過程中亦可能扮演著重要的角色。
Abstract
The ubiquitin-proteasome pathway is the major proteolytic system in all eukaryotic cells. This pathway is responsible not only for the degradation of short and long-lived proteins but also tumor suppressors, transcription factors and cell cycle proteins. Altered degradation of these proteins should have profound effects on tumor growth and apoptosis.
In present study, the effect of MG132, an inhibitor of 26S proteasome, on p53-deficient human non-small cell lung cancer (NSCLC), H1299 was investigated. Treatment of the cells with MG132 induced reactive oxygen species (ROS) production, G2/M arrest and apoptosis in conjunction with up-regulated levels of cell cycle regulation proteins, p21 Waf/Cip1 and p27Kip1, and down-regulation of anti-apoptotic bcl-2 families. Inhibitions of the ROS production by antioxidants such as glutathione, N-acetylcysteine or catalase prevented the G2/M arrest but have no effect on apoptosis induced by MG132. This data suggested that ROS production was involved in MG132-induced G2/M arrest. However, diminished the expression of p21 Waf/Cip1 by siRNA seems insufficient to prevent MG132-mediated G2/M arrest, suggested that other pathways might involved.
Western blot analysis also showed that MG132 activated the stress kinase JNK and triggered phosphorylation of c-Jun. Sp600125, a specific inhibitor of the JNK-AP-1 pathway, inhibited the MG132 induction of c-Jun phosphorylation but only slightly attenuated the p21 expression. The apoptosis induced by MG132 was augmented by Sp600125 treatment, p21 Waf/Cip1 siRNA and p21 Waf/Cip1antisense oligonucleotide transfection. These data suggested that neither JNK activation nor p21 up-regulation was involved in MG132 induced apoptosis. In contrast, both of them might play a protective role in this effect.
Furthermore, MG132 also caused the released of cytochrome c, activation of caspase-3 with the consequent degradation of poly-ADP ribose polymerase (PARP). In addition, the broad-spectrum caspase inhibitor, z-VAD-FMK markedly reversed apoptosis induced by MG132. All these data suggested that the apoptotic effect of proteasome inhibition in H1299 cells might be through the mitochondria pathway and caspases might play an important role in this signaling pathway.
目錄
頁碼
附圖目錄…………………………………………………………….. 5
附表目錄…………………………………………………………….. 6
縮寫表……………………………………………………………….. 7
中文摘要…………………………………………………………….. 8
英文摘要…………………………………………………………….. 10
口試委員問答集…………………………………………………….. 12

第一章 緒論

1-1 細胞內蛋白質分解的方式……………………………………… 14
1-1.1 Lysosomal apparatus 及ubiquitin proteasome pathway. 14
1-1.2 26S proteasome 的結構……………………………….. 15
1-2 Ubiquitin-proteasome system 的功能…………………………. 16
1-2.1 細胞週期的調控 (Cell Cycle Regulation)……………. 16
1-2.2 轉錄作用的調控 (Transcriptional Regulation)……….. 18
1-2.3 細胞凋亡 (Apoptosis)…………………………………. 19
1-3 26S proteasome 的抑制劑………………………………. 21
1-4 26S proteasome 抑制劑的生物效應…………………………… 23
1-4.1 抑制蛋白質分解 (Inhibition of Protein Degradation)… 23
1-4.2 引發熱休克反應 (Induction of Heat Shock Response).. 23
1-4.3 抗發炎活性 (Anti-inflammatory Activity)…………… 24
1-4.4 細胞毒性 (Cytotoxicity)……………………………… 24
1-4.5 抗腫瘤作用 (Anti-tumor Effects)…………………….. 25
1-5 研究動機……………………………………………………….. 26

第二章 實驗材料與方法

2-1 實驗材料……………………………………………………….. 35
2.1.1 實驗藥品………………………………………………. 35
2.1.2 抗體、載體與質體……………………………………. 36
2-2 實驗方法……………………………………………………….. 37
2-2.1 Cell Line and Culture Condition………………………. 37
2-2.2 Assessment of Apoptosis and Cell Cycle Analysis……. 37
DNA Content Analysis………………………………... 37
Annexin V-FITC and PI Double Stain………………… 38
2-2.3 Measurement of Mitochondrial Transmembrane
Potential (ΔΨm)……………………………………….. 38
2-2.4 Determination of Production of H2O2 and Hydroxyl
Radical………………………………………………… 39
2-2.5 Measurement of Caspase Activation…………………... 39
2-2.6 DNA Fragmentation Assay on Agarose Gel…………… 40
2-2.7 Western Blot Analysis…………………………………. 41
2-2.8 Cytochrome c Release and PARP Cleavage…………… 43
2-2.9 Reverse transcription-polymerase Chain Reaction
(RT-PCR)……………………………………………… 44
2-2.10 Transfection and Luciferase Activity Assay…………… 47
2-2.11 Transfection of p21 Sense and Antisense
Oligonucleotide……………………………………….. 49
2-2.11 Transfection of p21 siRNA……………………………. 50

第三章 結果

3-1 MG132引發人類肺癌細胞產生細胞凋亡的現象…………… 51
3-2 MG132 對細胞週期的影響…………………………………… 53
3-3 自由基在MG132引起的細胞凋亡中所扮演的角色………… 54
3-3.1 MG132引發細胞內自由基增加……………………... 54
3-3.2 抗氧化劑對MG132引起之細胞凋亡及細胞週期改
變之影響……………………………………………… 55
3-4 MG132對於細胞週期調控蛋白的影響……………………… 56
3-4.1 MG132對p21 Waf/Cip1表現的調控作用………………. 57
3-4.2 p21 Waf/Cip1抗細胞凋亡的作用………………………… 59
3-4.3 p21 Waf/Cip1對於細胞週期的調控作用………………… 61
3-5 JNK/AP1 訊息傳遞路徑在MG132引起的細胞凋亡中所
扮演的角色……………………………………………. 62
3-5.1 MG132對JNK/AP1 訊息傳遞路徑的影響………… 62
3-5.2 MAPK inhibitior對於MG132引發p21 Waf/Cip1表現
的影響………………………………………………… 63
3-5.3 JNK /stress activation kinase抗細胞凋亡的作用……. 63
3-6 MG132對細胞粒線體的影響………………………………… 64
3-6.1 MG132不會造成細胞粒線體膜電位的下降………... 64
3-6.2 MG132導致cytochorme c從粒線體釋出,並活化
Caspase 3及造成PARP cleavage……………………. 65
3-6.3 MG132 對於Bcl-2家族蛋白的影響……………….. 66
3-7 Pancaspase inhibitor 抑制MG132引起的細胞凋亡………… 67
3-8 SP600125 對於MG132引發細胞凋亡的加成作用………… 68

第四章 討論

4-1 Proteasome抑制劑的細胞毒性作用…………………………. 99
4-2 MG132引發細胞內自由基產生……………………………... 101
4-3 MG132對於p21 Waf/Cip1的調控作用………………………..... 105
4-4 p21 Waf/Cip1在調控細胞週期及細胞凋亡中扮演的角色……… 107
4-5 JNK/AP1 訊息傳遞路徑在MG132引起的細胞凋亡中
的作用………………………………………………………… 110
4-6 MG132引起粒線體依賴性細胞凋亡路徑
(Mitochondria-dependent Apoptosis Pathway)……………… 113

第五章 結論…………………………………………………….. 117
參考文獻……………………………………………………………119

附圖目錄

Figure 1-1 Ubiquitin-proteasome pathway………………………… 28
Figure 1-2 26S Proteosome 的組成………………………………. 29
Figure 1-3 引發細胞凋亡的不同路徑……………………………. 30
Figure 1-4 五類主要之proteasome 抑制劑……………………… 31
Figure 1-5 Proteasome inhibitors引發細胞凋亡的可能機轉……. 32
Figure 3-1.1 Phosphatidylserine extrernalization were determined by
Annexin-V-FITC staining……………………………… 69
Figure 3-1.2 Induction of apoptosis by MG132 on H1299 cells……. 70
Figure 3-2 MG132 induced G2/M arrest in H1299 cells ………….. 73
Figure 3-3.1 MG132 induced ROS production in a time and dose-
dependent manner and effect of antioxidant on MG132-
induced ROS production………………………………..75
Figure 3-3.2 Effects of antioxidant on MG132 induced apoptosis and
G2/M arrest…………………………………………….. 77
Figure 3-4 Effects of MG132 on p21, p27expression in H1299
Cell................................................................................. 79
Figure 3-4.1 MG132 enhanced p21 mRNA and protein expression
by increased p21 mRNA and protein stability in H1299
cells…………………………………………………… 80
Figure 3-4.2 MG132-mediated apoptosis enhanced by abolished
p21 expression in H1299 cells…………………………. 83
Figure 3-4.3 Inhibition of MG132-mediated G2/M arrest by
Abolished p21 expression in H1299 cells……………… 85
Figure 3-5.1 MG132 induced activation of the JNK/AP-1 pathway
in H1299cells………………………………………….. 86
Figure 3-5.2 Effects of MAP kinase inhibition on MG132-induced
p21 expression in H1299 cells…………………………. 87
Figure 3-5.3 MG132-induced apoptosis enhanced by specific JNK
inhibitor Sp600125……………………………………. 89
Figure 3-6.1 Effects of MG132 and SP600125 on mitochondria
membrane potential in H1299 cells…………………….. 90
Figure 3-6.2 MG132 caused cytochrome c release, caspase 3
Activation and PARP cleavage…………………………. 92
Figure 3-6.3 Western blotting analysis of Bcl-xL, Bcl-2 in total cell
lysate and mitochondria fraction of H1299 cells……... 94
Figure 3-7 Effect of a pan caspase inhibitor on MG132 induced
apoptosis……………………………………………….. 96
Figure 3-8 Effects of specific JNK inhibitor SP600125 on MG132
mediated changed of Bcl-2 family, cytochrome c release,
and PARP cleavage……………………………………… 97
Figure 5 Possible mechanism of MG132 induced apoptosis…… 118

附表目錄

Table 1-1 Ubiquitin-proteasome pathway的生理功能及相關
之蛋白質………………………………………………….. 33
Table 1-2 各類proteasome inhibitors的特性……………………….34
參考資料
Alexander B, Niculescu III, Chen X, Smeets M, Hengst L, Prives C and Reed SI. Effects of p21Cip1/WAF1 at both the G1/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Molecular and Cellular Biology 1998; 18:629-643
Alexei FK and Alfred LG. Proteasome inhibitors:from research tools to drug candidates. Chemistry & biology 2001; 8:739-758
Almond JB and Cohen GM. The proteasome:a novel target for cancer chemotherapy. Leukemia 2002; 16:433-443
Almond JB, Snowden RT and Hunter A:Proteasome inhibitor-induced apoptosis of B chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia 2001; 15:1388-1397
Amenta JS and Brocher SC. Role of lysosomes in protein turnover: catch-up proteolysis after release from NH4Cl inhibition. Journal of Cellular Physiology 1980; 102:259-266
Antonsson B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Molecular and Cellular Biochemistry 2004; 256/257:141-155
Ashkenazi A and Dixit VM. Death receptors:signaling and modulation. Science 1998; 281:1305-1308
Blagosklonny MV, Wu GS, Omura S and el-Deiry WS. Proteasome-dependent regulation of p21WAF1/Cip1 expression. Biochemical and Biophysical Research Communications 1996; 227: 564-569
Borner Christoph. The Bcl-2 protein family:sensors and checkpoints for life-or-death decisions. Molecular Immunology 2003; 39:615-647
Bost F, Mckay R, Bost M, Potapova O, Dean NM and Mercola D. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Molecular and Cellular Biology 1999; 19:1938-1949
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72:248-254
Bratton SB, MacFarlane M, Cain K and Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Experimental Cell Research 2000; 256: 27-33
Breitschopf K, Zeiher AM and Dimmeler S. Ubiquitin-mediated degradation of the proapoptotic active form of bid:a functional consequence on apoptosis induction. Journal of Biological Chemistry 2000; 275:21648-21652
Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T and Hannon GJ. Radiation–induced cell cycle arrest compromised by p21 deficiency. Nature 1995; 377:552-557
Brummelkamp TR, Nijman SM, Dirac AM and Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424, 797-801
Burton GW and Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Annals of the New York Academy of Sciences 1989; 570:7-22
Cayrol C and Ducommun B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene 1998; 17:2437-2444
Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M and Karin M. Necleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes & Development 2000; 14:1236-48
Chen F, Chang D, Goh M, Klibanov SA and Ljungman M. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth & Differentiation 2000a; 11:239-426
Chung YW, Jeong DW, Won JY, Choi EJ, Choi YH and Kim IY. H2O2-induced AP-1 activation and its effect on p21WAF1/Cip1-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochemical and Biophysical Research Communications 2002; 293:1248-1253
Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994 ; 79:13-21
Cross TG, Toellner DS, Henriquez NV, Deacon E, Salmon M and Load JM. Serine/Threonine Protein Kinases and Apoptosis. Experimental Cell Research 2000; 256:34-41
Deng C, Zhang P, Harper JW, Elledge SJ and Leder P. Mice lacking p21Cip/WAF1 undergo normal development, but ar defective in G1 checkpoint control. Cell 1995; 82:675-684
Dringen R, Gutterer JM and Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. European Journal of Biochemistry 2000; 267:4912-4916
Du L, Lyle CS, Obey TB, Gaarde WA, Muir JA, Bennett BL and Chambers TC. Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity. Journal of Biological Chemistry 2004; 279:11957-11966
Dulic V, Kaufmann W, Wilson S, Tlsty T, Lees E, Harper W, Elledge S and Reed S. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 75:1013-1023
Dulic V, Stein GH, Far DF and Reed SI. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M phase transition. Molecular and Cellular Biology 1998; 18:546-557
Dunn C, Wiltshire C, MacLaren A and Gillespie AF. Molecular mechanism and biological function of c-Jun N-terminal kinase signaling via the c-Jun transcription factor. Cellular Signalling 2002; 14:585-593
El-Deiry WS, Tokino T, Velculescu VE, Levy DB,Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817-825
Emanuele S, Calvaruso G, Lauricella M, Giuliano M, Bellavia G, D’anneo A, Vento R and Tesoriere G. Apoptosis induced in hepatoblastoma Hep G2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl-Xs and activation of caspase-3. International Journal of oncology 2002; 21:857-865
Even G and Littlewood T. A matter of life and cell death. Science 1998; 281:1317-1322
Fan XM, Wong CY, Wang WP, Zhou XM, Cho CH, Yren ST, Leung SY, Lin CM, Kung HF and Lam SK. Inhibition of proteasome function induced apoptosis in gastric cancer. International Journal of Cancer 2001; 93:481-488
Fuchs SY, Dolan L, Davis RJ and Ronai Z: Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 1996; 13:1531-1535
Garay M, GaardeW, Monia BP, Nero P and Cioffi CL. Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochemistry Pharmacology 2000; 59:1033-1043
Gartel AL and Tyner AL. Transcriptional regulation of the p21(WAF1/CIP1) Gene. Experimental Cell Research 1999; 246:280-289
Glaumann H and Ballard FJ (1987) Lysosomes: Their Role in Protein Breakdown, Academic Press
Gorospe M, Shack S, Guyton K, Samid D and Holbrock N. Up-regulation and functional role of p21 (WAF1/Cip1) during growth arrest of human breast carcinoma MCF-7 cells by phenylacetate. Cell Growth & Differentiation 1996b; 7:1609-1615
Gorospe M, Wang X, Guyton K and Holbrook N. Protective role of p21(WAF1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Molecular and cellular biology 1996a; 16:6654-6660
Grimm LM, Goldberg AL, Poirier GG, Schwartz LM and Osborne BA. Proteasomes play an essential role in thymocyte apoptosis. The EMBO Journal 1996; 15:3835-3844
Gross A, McDonnell JM and Korsmeyer SJ. Bcl-2 family members in the mitochondria in apoptosis. Genes & Development 1999; 13: 1899-1911
Harper JW, Elledge SJ, Keyomarsi B, Dynlacht L, Tsai H, Zhang P, Dobrowolski S, Bail C, Connell CL, Swindell E, Fox MP and Wei N. Inhibition of cyclin-dependent kinase by p21. Molecular Biology of the Cell 1995; 6:387-400
Hershko A and Ciechanover A. The ubiquitin system. Annual Review of Biochemistry 1998; 67:425-479
Ho FM, Liu SH, Liau CS, Huang PJ, and Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activation of c-Jun NH2-terminal kinase and caspase-3. Circulation 2000; 101:2618-2624
Hsu SL, Chen MC, Chou YH, Hwang GY and Yin SC. Induction of p21(Cip1/WAF1) and activation of p34(cdc2) involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells. Experimental Cell Research 1999; 248:87-96
Janero DR. Therapeutic potential of vitamin E against myocardial ischemic reperfusion injury. Free Radical Biology and Medicine 1991; 10:315-324
Ji LL. Exercise and oxidative stress:role of the cellular antioxidant systems. Exercise and Sport Science Reviews 1995; 23:135-166
Jin Y, Lee H, Zeng SX, Dai MS and Lu H. MDM2 promotes p21WAF1/Cip1 proteasomal turnover independently of ubiquitylation. The EMBO Journal 2003; 22:6365-6377
Johnson GL and Lapadat R. Mitogen-activated protein kinase pathways mediated by ERk, JNK, and p38 protein kinase. Scinece 2002; 298: 1911-1912
Kang KH, Kim WH and Choi KH. p21 promotes ceramide-induced apoptosis and antagonizes the antideath effect of Bcl-2 in human hepatocarcinoma cells. Experimental Cell Research 1999; 253:403-412
Karin M and Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-�羠 activity. Annual Review of Immunology 2000; 18:621-663
King RW, Jackson PK and Kirschner MW: Mitosis in transition. Cell 1994; 79:563-571
Kisselev AF and Goldberg AL. Proteasome inhibitors:from research tools to drug candidates. Chemistry & Biology 2001; 8:739-758
Koepp DM, Harper JW and Elledge SJ. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 1999; 97:431-434
Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL and Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Molecular Cell; 2001; 7:1143-1152
Kroemer G and Reed JC. Mitochondrial control of cell death. Nature Medicine 2000; 6:513-519
Kroemer G, Zamzami N and Susin SA. Mitochondrial control of apoptosis. Immunology Today 1997; 18:44-51
Lee CC and Kang JJ. Extract of motorcycle exhaust particles induced macrophages apoptosis by calcium-dependent manner. Chemical Research in Toxicology 2002; 15:1534-1542
Lee DH and Goldberg AL. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Molecular and Cellular Biology 1998; 18:30-38
Lemasters JJ, Nieminen AL, Qian T, Trost LC and Herman B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Molecular and Cellular Biochemistry 1997; 43: 161-165
Leppa S and Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 1999; 18:6158-6162
Li B and Dou QP. Bax degradation by the ubiquitin/proteasome dependent pathway:involvement in tumor survival and progression. Proceedings of the National Academy of Sciences of the united States of America 2000; 97:3850-3855
Li PF, Dietz R and von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation 1997; 96:3602-3609
Li PF, Dietz R and von Hrsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. The EMBO Jounal 1999 ; 18:6027-6036
Licent H, Poulain L, Remy JS, Desiandes E, Duigou F, Gauduchon P and Staedei C. The p21(Cip1/WAF1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Letter 2000; 161:17-26
Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J, Muggia FM and Perez-Soler R. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clinical Cancer Research 2003 a; 9:1145-54.
Ling YH, Liebes L, Zou Y and Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. Journal of Biological Chemistry 2003b; 278:33714-33723.
Lopes UG, Erhardt P, Yao R and Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. Journal of Biological Chemistry 1997; 272:12893-12896
Mark H. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology 1995; 7:215-223
Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G, Kanaan N, Vu MD and Wu J. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. Journal of Immunology 2001; 166:3130-3142
Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC and Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281:2027-2031
Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC and Arkinstall S. Bcl-2 undergoes phosphorylation by presence of constitutively active GTP-binding protein Rac1. Journal of biological Chemistry 1997; 272:25238-25242
May P and May E. Twenty years of p53 research : structural and functional aspects of the p53 protein. Oncogene 1999; 18: 7621-7636
Meister A and Andersone Me. Glutathione. Annual Review of Biochemistry 1983; 52:711-760
Meister A and Tate SS. Gultathione and related g-glutamyl compounds. Annual Review of Biochemistry 1979; 45:559-604
Meriin AB, Gabai VL, Yaglom J, Shifrin VI and Sherman MY. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. Journal of biological Chemistry 1998; 273:6378-6379
Musti AM, Treier M and Bohmann D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 1997; 175:400-402
Nakayama K, Furusu A, Xu Q, Konta T and Kitamura M. Unexpected transcriptional induction of monocyte chemoattractant proteion 1 by proteasome inhibition:involvement of the c-Jun N-terminal kinase-activator protein 1 pathway. Journal of Immunology 2001; 167:1145-1150
Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Mastsuda H and Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proceedings of the National Academy of Sciences of the united States of America 1998; 95:14681-14686
Naujokat C, Sezer O and Zinke H. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF/Cip1 in human immature leukemic cells. European Journal of Haematology 2000; 65:221-236
Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C and Reed SI. Effects of p21 (Cip1/WAF1)at both the G1/S and the G2/M cell cycle transitions:pRb is a critcal determinant in blocking DNA replication and in preventing endoreduplication. Molecular and Cellular Biology 1998; 18:629-643
Ogryzko VV, Wong P and Howard BH. WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Molecular and Cellular Biology 1997; 17:4877-4882
Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omura S and Tanaka K. The proteasome is involved in angiogenesis. Biochemical and Biophysical Research Communications 1998; 246: 243-248
Packer JE, Slater TF and Willson RL . Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979; 278: 737-738
Packer L. Antioxidant properties of lipoic acid and its therapeutic effects in prevention of diabetes complications and cataracts. Annals of the New York Academy of Sciences 1994; 738:257-264
Packer L. Protective role of vitamin E in biological systems. American Journal of Clinical Nutrition 1991; 53:1050S-1055S
Pagano M, Tam SW, Theodoras AM, Beer-Romero P, DelSal G, Chau V, Yew PR, Draetta GF and Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269:682-685
Pahl HL. Activators and target genes of Rel/NF-KappaB transcription factors, Oncogene 1999; 18:6853-6866
Pastorino JG, Chen ST, Tafani M, Snyder JW and Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. Journal of Biological Chemistry 1998; 273:7770-7775
Pastorino JG, Tafani M, Rothman RJ, Marcineviciute A, Hoek JB and Farber JL. Functional consequences of the sustained or transient activation by bax of the mitochondrial permeability transition pore. Journal of Biological Chemistry 1999; 274:31734-31739
Potapova O, Gorospe M, Dougherty RH, Dean NM, Gaarde, WA and Holbrook NJ. Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Molecular and Cellular Biology 2000; 20: 1713-1722
Roninson IB. Oncogenic functions of tumor suppressor p21Waf/Cip1/Sdi1 association with cell senescence and tumor-promoting activities of stromal fibroblasts. Cancer Letters 2002; 179:1-14
Rothe G and Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. Journal of Leukocyte Biology 1990; 47: 440-448
Ruan S, Okcu MF, Ren JP, Chiao P, Andreeff M, Levin V and Zhang W. Overexpressed WAF1/Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-cholroethyl)-1-nitrosourea and cisplatin. Cancer Research 1998; 58:1538-1543
Sadoul R, Fernandz PA, Quiquerez AL, Marinou I, Maki M, Schroter M, Becherer JD, Irmler M, Tschopp J and Martinou JC. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. The EMBO Journal 1996; 15:3845-3852
Santiago-Josefat B and Fernandez-Salguero PM. Proteasome inhibition induces nuclear translocation of the dioxin receptor through an Sp1 and protein kinase C-dependent pathway. Journal of Molecular Biology 2003; 333:249-260.
Schroeter H, Boyd CS, Ahmed R, Spencer PE, Duncan RF, Rice-EVANS C and Cadenas E. c-Jun N-terminal kinase (JNK) mediated modulation of brain mitochondria function:new target proteins for JNK signaling in mitochondrion-dependent apoptosis. Biochemical Journal 2003; 372:359-369
Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM and Clurman BE. Proteasomal turnover of p21 Cip1 does not require p21 Cip1 ubiquitination. Molecular Cell 2000; 5:403-410
Sherr and Charles J. Cancer cell cycles. Science 1996; 274:1672-1677
Shimizu S and Tsujimoto Y. Pro-apoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate VDAC activity. Proceedings of the National Academy of Sciences of the united States of America 1999; 97:577-582
Shimizu S, Shinohara Y and Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399:483-487
Shimul AS, Michael WP and Mark PC. Ubiquitin propteasome pathway: implications and advances in cancer therapy. Surgical Oncology 2001 10:43-52
Stefanelli C, Bonavita F, Stanic I, Pignatti C, Farruggia G, Masotti L, Guarnieri C and Calderera CM. Inhibition of etoposide induced apoptosis with peptide aldehyde inhibitors of proteasome. Biochemical Journal 1998; 332:661-665
Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca F, Ruderman J and Hershko A. The cyclosome, a large complex containing cyclin selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Molecular Biology of the Cell 1995; 6:185-198
Susin SA, Zamzami N, Castedo M and Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. Journal of Experimental Medicine 1996; 184:1331-1341
Tonomura N, McLaughlin K, Grimm L, Goldsby RA and Osborne BA Osborne. Glucocorticoid-Induced apoptosis of thymocytes: requirement of proteasome-dependent mitochondrial activity. Journal of Immunology 2003; 170:2469 - 2478.
Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J and Allday MJ. A degradation signal located in the C-terminus of p21 WAF1/CIP1 is a binding site for the C8 a-sub unit of the 20S proteasome. The EMBO Journal 2001; 20:2367-2375
Toyoshima and Hunter T. p27, a novel inhibitor of G1-cyclin –CDK protein kinase activity, is related to p21. Cell 1994; 78:67-74
Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A and Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424, 793-796
Tsujimoto Y and Shimizu S. VDAC regulation by the Bcl-2 family of proteins. Cell Death and Differentiation 2000; 7:1174-1181
Wagenknecht B, Hermisson M and Groscurth P. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. Journal of Neurochemistry 2000; 75:2288-2297
Wang CY, Mayo MW, Korneluk RG, Goeddel DV and Baldwin AS. NFkB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680-1683
Wang Y, Blandino G and Givol D. Induced p21 waf expression in H1299cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 1999; 18: 2643-2649
Whitmarsh AJ and Davis RJ. Transcription factor AP-1regulation by mitogen-activated protein kinase signal transduction pathways. Journal of Molecular Medicine 1996; 74:589-607
Wu HM, Chi KH and Lin WW. Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS letters 2002; 526:101-105
Yamamoto K, Ichijo H and Korsmeyer SJ. Bcl-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Molecular and Cellular Biology 1999; 19:8469-8478
Yang Y, Ikezoe T, Saito T, Kobayashi M, Koeffler HP and Taguchi H. Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Science 2004; 95:176-180
You H, Yu W, Munoz-Medellin D, Brown PH, Sanders BG and Kline K. Role of extracellular signal-regulated kinase pathway in RRR-alpha-tocopheryl succinate-induced differentiation of human MDA-MB-435 breast cancer cells. Molecular Carcinogenesis 2002; 33:228-236
Yu B. Cellular defenses against damage from reactive oxygen species. Physiological Reviews 1994; 74:139-162
Zamzami N and Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Molecular and Cellular Biology 2001; 2: 67-71
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 顏江河、鍾旭和 (1990) 台灣杉幼苗感染Scutellospora nigra 內生菌根之觀察。林業試驗所研究報告季刊5(1):51-60。
2. 鍾旭和、顏江河 (1994) 菌根接種與土壤含水量對台灣杉幼苗生長之影響。林業試驗所研究報告季刊9(4):291-298。
3. 顏江河、林哲毅 (2002) 兩種土壤中接種菌根對大頭茶苗木的生長效應。林業研究季刊 24(1):45-52。
4. 鍾旭和、顏江河、簡光文 (1991) 台灣杉菌根化容器苗之培育研究。林業試驗所研究報告季刊6(4):345-356。
5. 簡慶德、郭紀凡、潘富俊、陳舜英、鄭育斌、孫義方、游孟雪 (2000)墾丁高位珊瑚礁自然保留區之森林組成與結構分析。林業研究專訊 39:13-14。
6. 盧廷瑋、李明仁 (2002) 囊叢枝菌根菌Acaulospora scrobiculata對繖 楊苗木生長之效應。中華林學季刊35(4):331-339。
7. 蘇鴻傑、蘇中原 (1988) 墾丁國家公園植群之多變數分析。中華林學季刊 21(4):17-32。
8. 王相華 (1995) 不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4):405-418。
9. 鄔家琪、張喜寧 (2004) 叢枝菌根植物的乾旱逆境抗性機制。中國園藝53(3):235-243。
10. 曾世昌、郭幸榮、李遠欽 (1991) 鹽沫對木麻黃之若干生理為害。中華林學季刊 24(3):27-34。
11. 郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊 30(2):165-185。
12. 陳健忠、張喜寧 (1997) 叢枝菌根對寄主植物磷吸收之影響。中國園藝 43(3):175–181。
13. 陳泰安、張喜寧 (1994) 囊叢枝菌根菌分類簡史及其生產與運用。科學農業 42(9,10):284-296。
14. 陳仁炫、翁玉娥、王銀波 (1994) 有機質肥料的添加對土壤磷吸附特性之探討。中國農業化學會誌 32(3):332-346。
15. 翁仁憲 (1996) 作物之光合、呼吸及蒸散作用與其環境適應性關係。中華農業氣象 3 (1):1-7。