(44.192.66.171) 您好!臺灣時間:2021/05/18 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宗岡
研究生(外文):Tsung-Kang Chen
論文名稱:企業價值與信用風險之評估—現金流量折現基礎信用風險模型∼專案/公司債券及擔保貸款憑證評價之應用—購併活動市場認同度影響因子之實證研究∼以美國股權交換購併案件為例
論文名稱(外文):Enterprise Valuation and Credit Risk Evaluation—DCF-Based Credit RiskModel~Application in Project/Corporate Bonds & CLO—The Influencing Factors’Research of Market’s Acceptance on M&A Activities~Empirical Tests on Stock Exchange Cases
指導教授:廖咸興廖咸興引用關係
指導教授(外文):Hsien-Hsing Liao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:118
中文關鍵詞:購併信用風險市場接受度平均反轉時間相依之現金流量隨機模型企業評價
外文關鍵詞:Mean-reversionTime-dependent Stochastic Cash Fl
相關次數:
  • 被引用被引用:2
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
企業價值與信用風險之評估

研究一

現金流量折現基礎信用風險模型~專案/公司債券
及擔保貸款憑證評價之應用

論文摘要

在信用風險模型的研究上,迄今已有相當多的研究者提出。依其模型假設及著重點的不同,大致可分為結構型(structural-form)與縮減型(reduced-form)兩大類信用風險模型。而在此兩大類傳統信用風險模型架構下,鮮少有直接以現金流量的隨機模型來作為衡量企業信用風險的研究基礎。這是因為一般人認為現金流量不易估計,且亦無人發展出適合的模型來描述現金流量。本研究透過對現金流量的觀察,發現其具有「一般平均反轉」、「可正可負」的隨機特性,因此本研究結合計量經濟學中系統變異性參數模型的概念,建立「時間相依之現金流量隨機模型」(Time-dependent stochastic cash flow model),並以此模型為基礎來進行企業價值評估,進而發展出多期的信用風險模型。
利用本研究所設計的多期現金流量折現基礎信用風險模型(DCF-Based Credit Risk Model),並結合Jarrow-Turnbull Model(1995)對有違約風險債券評價的概念,即能對專案債券與企業債券進行評價。而後,將單一企業之現金流量隨機模型推廣至多個企業,進而建立多資產之現金流量隨機模型。如此一來,對「多個企業抵押貸款債權」重新組合包裝(pool)後所衍生的資產證券化商品—CLO(Collateralized Loan Obligation)、CDO(Collateralized Debt Obligation) ,亦能依此模型進行評價。
本研究自台灣市場中選取24家樣本企業,並依現金流量隨機模型來進行評價與信用風險的驗證。結果顯示﹕評價驗證方面有2/3以上符合,信用風險驗證上有3/4以上符合。所以本模型效力初步是受到實證肯定支持的。
而在資產證券化商品CLO方面,初步結果顯示:多資產現金流量折現基礎信用風險模型會受到是否存在交叉違約(cross-default)的條件限制。未來將嘗試引入傅立葉轉換的概念與本模型相結合來處理此一問題,這也是本研究後續發展的重心。

研究二

購併活動市場認同度影響因子之實證研究∼
以美國股權交換購併案件為例


論文摘要

近年來,由於全球購併活動的盛行,因此市場對於購併活動的反應逐漸受到重視。所以本研究對於市場反應所扮演的角色及其所隱含的意義感到相當的興趣。而市場反應主要受到「預期綜效」(expected synergy, 亦即預期未來所能產生的效益)與「購併溢酬」(merger premium, 為完成購併所需付出的成本)的影響,故兩者之關係成為本研究的主要討論範疇。然而,傳統上對於兩者之關係並無提出一個整合型的分析性架構,對市場的反應亦無法作有效的衡量測度。本研究透過股價反應,建立市場預期綜效的衡量指標;並以L-G model為基礎,納入「預期綜效」與「未來的盈餘績效變動」的考量,重新建置出「企業價值」與「換股比率」之新平面,進而發展出能將預期綜效與購併溢酬整合於同一分析性架構的新模型—市場接受度模型(LMA Model),克服了以往綜效與溢酬難以比較的限制。此外,本研究透過此分析性架構下的預期綜效與購併溢酬之關係,定義了一個對市場反應的新衡量測度:市場接受度(the level of market’s acceptance, LMA)。
因此,本研究之目的主要有二:一為探討目前市場上之購併案件是否合理。二為尋找出能解釋市場接受度的因子並討論其經濟意涵。
本研究自美國市場中選取251各股權交換購併案件(其中214件為正的購併溢酬,37件為負的購併溢酬)作為研究樣本,並依市場接受度模型來進行購併溢酬合理性的評估。結果顯示:第一,宣告期間中,有148件的購併參與者至少能維持其原有股東財富不變(落在市場接受度模型平面的第一象限);反之,有103件的購併參與者至少有一方受到股東財富的減損。然而,在本研究所觀察的購併期間(宣告日、完成日、完成日後一月)中,至少有40%的購併案件不落於市場接受度模型的合理區間。第二,落於合理區間的148件購併案件,其主併公司自宣告日前一月即具有超越市場的績效表現。這顯示了可能存在資訊滲漏( information leakage)的現象。第三,在本研究所觀察的三個期間中,購併參與者的相對財富地位比率(相對價格比率、相對資本比率等)皆對於市場接受度有相同方向的影響。
綜合以上所述,本研究的主要貢獻為:提出市場接受度模型,將有效地將預期綜效與購併溢酬整合於同一分析性架構。這不但解決了L-G model 原有的不合理限制,對購併活動中的市場反應,也創造出一個新而有效的市場衡量測度。此外,市場接受度與相對財富地位比率的關係,亦對購併案件的合理性提供了另一方面的解釋。
Enterprise Valuation and Credit Risk Evaluation

Research I

DCF-Based Credit Risk Model—Application in Project/Corporate Bonds & CLO


ABSTRACT

There are many research models about enterprise credit risk and can be roughly categorized into structural-form and reduced-form according to their assumptions and focuses. Under these two types of credit risk models, few people use stochastic cash flow model to evaluate enterprise credit risk. It’s because people generally think it difficult to estimate cash flow, and no one had ever developed an applicable model to describe the stochastic characteristics of cash flow. Through our observations of cash flow, however, we discover that the behavior of cash flow exist some stochastic characteristics, including mean-reversion and fluctuating above or under zero. We therefore use the concept of “varying coefficient model” (also called time-varying parameter models) to construct a “Time-dependent stochastic cash flow model”. And then based on this model, we further establish a “Multi-periods DCF-Based Credit Risk Model” to estimate a firm’s value and to evaluate a firm’s credit risk.
By using these two models and the concept of expected payoff ratio used to evaluate risky bonds developed by Jarrow-Turnbull Model (1995), we can now value the project bonds and corporate bonds. Furthermore, we expand the single firm’s “Multi-periods DCF-Based Credit Risk Model” to multi-firms and then construct a “Multi-assets & periods DCF-Based Credit Risk Model”. In this way, we then can valuing the securitized products including CLO(Collateralized Loan Obligation), CDO(Collateralized Debt Obligation) re-pooled from all kinds of collateral debts .
In our research, we select 24 companies as our sample and then make empirical tests of valuation and credit risk by our models. The empirical results show that our models precisely value more than two-third of sample companies and successfully assess credit risks of more than three-fourth of sample companies. These results indicate that our models are preliminarily supported by the empirical evidences.
However, in valuing the securitized products such as the CLO by using the “Multi-assets & periods DCF-Based Credit Risk Model” is limited because the model correctly can only deal with the portfolio that assets are cross-default. To handle with this limitation, the Fourier Transform Method (FTM) can be introduced into our models. Fortunately, it seems very promising that the limitation can be relieved by FTM. It is also the focus of our further study.


Research II

The Influencing Factors’ Research of Market’s Acceptance on M&A Activities—Empirical Tests on Stock Exchange Cases


ABSTRACT

Due to hot merges and acquisitions in the recent years in the world, we are interested in the roles and hidden meanings of market’s reaction toward M&A activities. However, market reaction is primarily influenced by expected synergy and merger premium, which individually represents expected benefit in the future and cost for mergers. For this reason, the relationship between expected synergy and merger premium becomes the focus of our research. But in historical researches, there doesn’t exist an integrated-analytical framework to describe the relationship. In this paper, we set a measure for expected synergy through stock price’s fluctuating. Additionally, we construct a new plane for firm’s value and exchange ratio based on L-G model by consideration of the expected synergy and the time-varying earning performance. Furthermore, we develop a LMA model which can integrate expected synergy and merger premium in the analytical framework. This model overcomes the difficulties that expected synergy is hard to compare with merger premium in the past. Moreover, we also create a new measure “the level of market’s acceptance” (LMA) through the analytical framework.
Therefore, there are two main purposes in our research. First, to examine whether the merger case is reasonable or not. Second, to find out what are the factors which can explain market’s reaction (LMA) and discuss the meanings of these significant factors.
In our research, we select 251 stock-exchange mergers (214 for positive premium, 37 for negative premium) as our sample and make judgments for the merger reasonableness by LMA model and statistical tests. As a result, we make some important conclusions: First, 148 of the 251 proposed mergers produced sufficient combined value to maintain each participant’s quadrant I status at the time of merger announcement. Alternatively, the announcement effects produced wealth losses for one or both firms in 103 of the mergers. In the merger period examined (i.e., announcement to the month following completion), at least 40% do not conform to the rationality assumption of LMA model. Second, acquiring firms of the 148 cases outperform the market since one month prior to announcement. It reveals that there may be information leakage. Third, some ratios of relative wealth status significantly influence the level of market’s acceptance in the same direction during the three periods.
To sum up, the main contributions of this study is that, by constructing LMA model and making expected synergy can be efficiently compared with merger premium. We not only solve the constraint of the original L-G model but also create a new and effective measurement of market‘s reaction toward M&A activities. In addition, we explore the relationship between LMA and relative wealth’s ratio and try to discuss its economic meanings.
研究一目錄


第一章、 緒論 1
第一節、研究動機 1第二節、研究目的 2第三節、潛在貢獻 3第四節、研究架構 5
第一項、現金流量隨機模型 5
第二項、現金流量折現基礎評價及信用風險模型 6
第三項、參數估計方法 7

第二章、 現金流量隨機模型 8
第一節、現金流量之特性 8第二節、文獻回顧 10
第一項、平均反轉隨機模型相關研究 10
第二項、變異數參數模型 11
第三項、跳躍模型 12
第三節、現金流量隨機模型之設計 13
第一項、專案融資計劃 14
第二項、一般企業 16
第四節、現金流量隨機模型之參數估計 19
第一項、專案融資計劃 19
第二項、一般企業 21
第三項、景氣循環因子之參數估計 22
第三章、 現金流量折現基礎評價模型 26
第一節、現金流量折現法 26
第一項、專案融資計劃之評價 26
第二項、一般企業之評價 27
第三項、自由現金流量折現法與時間序列分析 28
第二節、模型實證結果 32第三節、現金流量折現基礎評價模型之評論 35

第四章、 現金流量折現基礎信用風險模型 36
第一節、前言 36第二節、信用風險模型相關研究 36
第三節、現金流量折現基礎信用風險模型之設計 38
第一項、專案融資計劃之信用風險評估 38
第二項、一般企業之信用風險評估 41
第四節、模型評等與實證結果 46
第五節、現金流量折現基礎信用風險模型之設計流程 48

第五章、 專案負債/企業負債之評價模型 50
第一節、專案負債之評價 50
第一項、專案負債相關研究 50
第二項、J-T Model於負債評價的適用性 51
第三項、評價方法 51
第二節、企業負債之評價 53
第三節、公司債評價之個案分析 53
第一項、不同參數估計法下之企業價值與信用風險衡量 53
第二項、公司債之評價 60
第四節、專案/企業負債之評價流程 62

第六章、 資產證券化商品的評價 64
第一節、CLO的評價思維 64第二節、CLO初步評價方法 66
第一項、假設CLO各個tranche的規模已知 66
第二項、假設CLO各個tranche的規模未知 66

第七章、 結論 68

References 70

Appendixes 72
I. Different Credit Risk Models 72
II. 景氣循環因子一般平均反轉現象 73
III. 時間相依現金流量隨機模型之參數估計方法 74
IV. 景氣循環因子之參數估計 79
V. 信用風險因子敏感性分析 80
VI. S&P’s Cumulative Default Rates 82
VII. 調整因子隨機模型參數估計方法之殘差異質變異檢定 83
VIII. 公司債評價相關問題探討 85
IX. 多企業資產價值分配之探討 86


研究二目錄

Research II Contents


I. Introduction 88

II. Literature Reviews 91

III. LMA Exchange Ratio Model 94
�� Original L-G Model 94
�� LMA Model 98

IV. Data and Methodology 100
�� Data 100
�� Hypotheses and Methodology 100

V. Empirical Results 102

VI. Limitation 115

VII. Conclusions…………115

References 117
研究一
References

1.Crosbie & Bohn, “Modeling Default Risk”, KMV company, 1993
2.Darrell Duffie and Nicolae Garleanu, “Risk and Valuation of Collateralized Debt Obligations”, Working Paper, Sep 2001
3.Edward I. Altman, Andrea Resti and Andrea Sironi, “Analyzing and Explaining default Recovery Rates”, A Report Submitted to The International Swaps & Derivatives Association , 2001
4.Jason C. Hsu, Jesus Saa-Requejo and Pedro Santa-Clara, “Bond Pricing with Default Risk”, Working Paper, Dec 2002
5.John Hull and Alan White, “Valuation of a CDO and an nth to Default CDS Without Monte Carlo Simulation”, Working Paper, Jan 2004
6.John Hull ;AlanWhite, “Pricing Interest-Rate-Derivative Securities”,The Review of Financial Studies, 1990
7.Mansoor Dailami; Robert Hauswald “The Emerging Project Bond Markets: Covenant Provisions and Credit Spreads”, World Bank Policy Research Working Paper 3095, July 2003
8.Masaaki Kijima and Katsuya Komoribayashi, ”A Markov Chain Model for Valuing Credit Risk Derivatives”, Journal of Derivatives, Fall 1998
9.Robbert Jarrow, “Default Parameter Estimation Using Market Prices”, Financial Analysis Journal, Sep 2001
10.Robert A. Jarrow; Stuart M. Turnbull , “Pricing Derivatives on Financial Securities Subject to Credit Risk”, The Journal of Finance , 1995
11.Robert Litterman and Thomas Iben, “Corporate bond valuation and the term structure of credit spreads”, Journal of Portfolio Management, Spring 1991
12.Wei-Cheng Miao, “Quadratic Variation Estimators for Diffusion Models in Finance, Working Paper, Dec 2003
13.Yang-Cheng Lu, Soushan Wu and Yun-Yung Lin, “BOT Projects in Taiwan: Financial Modeling Risk, Term Structure of Net Cash Flows, and Project at Risk Analysis”, The Journal of Project Finance, 2000
14.劉建宏,”抵押貸款證券評價之研究”, 國立台灣大學財務金融研究所未出版碩士論文, 2002
15.林淑芳, “專案負債之評價—應用Jarrow-Turnbull Model”, 國立台灣大學財務金融研究所未出版碩士論文, 2000
16.葉仕國, “整合性利率期限結構模型之實證研究”, 國立台灣大學商學研究所博士論文, 1997
17.Griffiths. L tkepohl.Judge.Hill.Lee著,李順成譯,「計量經濟學-理論與應用」,上、下冊,曉園出版,民國七十八年

研究二

References
1.Anonymous,” Stock Price Premiums: A Market Phenomenon”, Mergers and Acquisitions Philadelphia Volume: 26 Issue:4 56-61 (Jan/Feb 1992)
2.Ansoff, H. Igor., Richard G. Brandenburg, Fred E. Portner, and Raymond Radosevich., “Acquisition Behavior of U.S. Manufacturing Firms, 1946-1965, Vanclerbilt University Press, 1971
3.Beattie, D. L., “Conglomerate Diversification and Performance: A Survey and Applied Economics”, pp251-273, 1980
4.Brealey and Myers, “Principles of Corporate Finance”, 7th edition, McGraw-Hill /Irwin Company, pp344-371, 2004
5.Kermit D. Larson and Nicholas J. Ginedes, “Business Combinations: An Exchange Ratio Determination Model”, The Accounting Review, pp721-728, (October 1969)
6.Kim, E. Han, and John, J. McConnell., “Corporate Mergers and the Co-Insurance of Corporate Debt.” The Journal of Finance , pp93-119, March 1977
7.Lubatkin, Michael. ,”Mergers and the Performance of the Acquiring Firm.”, Academy of Management Review , 8, pp218-225, 1983
8.Mengxin Zhao and Kenneth Lehn, “CEO Turnover After Acquisitions: Do Bad Bidders Get Fired?”, Working paper,(June 2003)
9.Mueller, Dennis C., “Mergers and Market Share.”, The Review of Economics and Statistics, 67, pp259-267, (1985)
10.Penn, Thomas A. “Premiums: What Do They Really Measure?” Mergers and Acquisitions Philadelphia Volume:16 Issue: 3, 30-34 (Fall 1981)
11.Robert L. Conn & James F. Nieisen, “An Empirical Test of the Larson-Gonedes Exchange Ratio Determination Model”, The Journal of Finance, VOL. XXXII, NO. 3 (June 1977)
12.Shawver, T.J. “ Determinants of bank merger premiums.” Bank, Accounting & Finance, 15(6), 26-29 (2000)
13.Shay, Scott A.,”Setting the ''Right'' Premium in an Efficient Market”, Mergers and Acquisitions Philadelphia, Volume: 16 Issue: 1 23-28 (Spring 1981)
14.Shu-Yu, Mou, “An empirical study of exchange rate in bank merge and acquisition, 2000
15.Shu-Wei, Hsu, “An Empirical Research on Corporate Performance after M&A in Taiwan, 2002
16.Terry Cooke, Alan Gregory and Bernard Pearson, “A UK Empirical Test of the Larson-Gonedes Exchange Ratio Model”, Accounting and Business Research, Vol. 24, No. 94, pp 133-147, (1994)
17.Yasuo Hoshino, “ The Performance of Corporate Mergers in Japan”, Journal of Business Finance and Accounting, 9, pp145-163, (1982)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊