(3.210.184.142) 您好!臺灣時間:2021/05/09 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂日祥
研究生(外文):Nyet-Seong Chiw
論文名稱:無溶劑型-有機無機混成光敏性光學材料
論文名稱(外文):Solventless Organic-Inorganic HybridLight Sensitive Optical Materials
指導教授:林唯芳林唯芳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:奈米結構溶膠凝膠法壓克力高分子有機無機材料
外文關鍵詞:silica sol-gelnanodomainOrganic-inorganic hybrid materialsbutyl acrylate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑑於壓克力具有良好的加工性、光學性以及接著性,因此壓克力在光學方面的發展具有非常大的潛能。但由於壓克力的玻璃轉移溫度一般都不高以及其機械性質較差,因此加入適當的無機物作為性質上的調整是必要的。
Poly(butyl acrylate)(PBA)在光學方面是一種非常有潛力的壓克力高分子。雖然它的玻璃轉移溫度較低,但是PBA是良好的接著劑並且擁有很好的易曲性(flexibility)非常適合使用在光學接著劑上。PBA為一疏水性材料,因此可得低吸濕性材料。利用自由基聚合法將butyl acrylate與3-methacryloxypropyl trimethoxy silane共聚合成高分子,共聚高分子中並加入tetraethoxy silane,以增加無機含量,經由水解縮合(sol-gel)反應,便可以得到側鏈基的二氧化矽交聯網狀奈米結構的高分子。使用真空抽氣法,將溶劑除去並加入壓克力單體與光起始劑,最後使用光波長為365nm的紫外光將反應物聚合,便可以得到我們所要的產物。
我們成功製備玻璃轉移溫度大於200oC、高穿透率(>95%)、低吸濕性低(<5%)、高楊氏係數(>2.5GPa)、低熱膨脹係數(CTE=76ppm/oC) 、折射率在1.5範圍內以及顆粒為15奈米的二氧化矽無溶劑型-有機無機混成光學材料。
Acrylates are easy to process, they exhibit good optical properties and adhesive strength, they are useful in the optical technology. However, their glass transition temperature and mechanical properties are inferior as compared with inorganic materials. Thus, we have incorporated inorganic component into poly butyl acrylate to enhance its property.
Copolymerized butylacrylate with 3-methacryloxypropyl trimethoxy silane by free radical polymerization in tetrahydrofuran. Tetraethoxy silane was added into the copolymer to adjust the concentration of inorganic moiety. The silane was removed by vacuum, then the material was blended with monomers and photoinitiators to prepare UV curable solventless organic-inorganic hybrid materials. The material is in liquid form which can be easily applied on different substrates and formed different patterns using photolithography technique.
The material after UV curing exhibits high glass transition temperature(>200oC), high transparency(>95%), lower moisture absorption(<5%), high Young''s modulus(>2.5Gpa), low coefficient of thermal expansion(CTE=76ppm/oC).The refractive index of the material is about 1.5 and the inorganic nanoparticle size domain is about 15nm.
目錄

摘要………………………………………………………….........Ⅰ
Abstract………………………………………………………………Ⅲ
目錄…………………………………………………………………….Ⅴ
圖目錄………………………………………………………………….Ⅸ
表目錄…………………………………………………………………XⅢ
第一章 前言…………………………………………………………….1
第二章 基礎理論與文獻回顧………………………………………….4
2.1 有機無機混成材料………………………………………………4
2.2 溶膠凝膠法………………………………………………………6
2.2.1 有機相與無機相間無化學鍵結………………........7
2.2.2 有機相與無機相間以物理作用力結合…………………8
2.2.3 有機相與無機相以化學共價鍵結合……………………9
2.2.4 高分子矽氧烷修飾結構…………………………………9
2.2.5 半混合式高分子互穿網狀結構………………………10
2.2.6 互穿網路結構…………………………………………11
2.2.7 合成高分子有機/無機網狀二氧化矽支鏈混成材料影響
的變數………………………………………........12
2.2.7.1 有機單體與矽氧烷單體的比例………………13
2.2.7.2 合成高分子前驅物時,溶劑與反應物濃度的影響………………………14
2.2.7.3 合成高分子前驅物時,起始劑的量或分子量所造成的影響…………………………………………15
2.2.7.4 合成高分子前驅物時,反應溫度與壓力的影響15
2.2.7.5 將前驅物進行水解縮合反應時,pH值的影響...16
2.2.7.6 水解縮合反應時,所加入稀釋溶劑(共同溶劑)的種類與溶劑量………………………………………17
2.2.7.7 水解縮合反應時,水量的影響………………….18
2.2.7.8 水解縮合反應時,反應溫度的影響…………….19
2.3 有機無機混成材料的製備……………………………………...20
2.4 積體光學……………………………………………….………..23
2.4.1 積體光學之發展…………………………………………23
2.4.2 光纖通訊產業……………………………………………24
2.4.3 光波導簡介………………………………………………25
2.4.4 光波導材料………………………………………………30
2.4.5 光波導材料的光傳損失因素以及材料設計……………33
2.4.6 平面光波導材料與製程設計之基本原理………………36
2.4.7 有機無機混成奈米材料於光學材料的應用……………39
2.5 有機無機混成材料的結構與其性質的關係…………………...41
第三章 實驗部份………………………………………………………47
3.1 實驗藥品…………………………………………………….......47
3.2 實驗儀器…………………………………………………….......49
3.3 實驗步驟…………………………………………………….......51
3.3.1實驗流程圖……………………………………………….51
3.3.2 反應合成流程圖…………………………………………52
3.3.3 BA-MPS共聚合物之製備………………………………..52
3.3.4 有機無機混成材料製備…………………………………53
3.4 實驗測試項目與樣品製備……………………………………...55
3.4.1 熱性質分析………………………………………………55
3.4.2 機械性質分析……………………………………………57
3.4.3 光學性質分析……………………………………………57
3.4.4 吸濕性……………………………………………………58
3.4.5 表面型態…………………………………………………58
3.4.6 溶膠凝膠反應的形成……………………………………59
第四章 結果與討論……………………………………………………60
4.1 有機無機混成光學材料配方探討……………………………...60
4.2 有機無機混成材料的水解縮合反應…………………………...63
4.3 有機無機混成光學材料熱性質………………………………...64
4.3.1 熱裂解溫度…..…………………………………………..64
4.3.2 玻璃轉移溫度……………………………………………70
4.3.3 熱膨脹係數………………………………………………73
4.4 共聚合物穩定度的探討………………………………………...79
4.5 有機無機混成材料光學性質量測……………………………...80
4.5.1 光穿透度…………………………………………………80
4.5.2 折射率………………….………………………………...83
4.6 有機無機混成材料機械性質…………………………………...88
4.6.1 硬度………….…………………………………………...88
4.6.2 楊氏係數…………………...…………………………….91
4.6.3 抗刮性……………….…………………………………...95
4.7 吸濕性…………………….……………………………………100
4.8 表面型態…………………………………………………….....103
第五章 結論…………………………………………………………..105
第六章 建議與未來工作……………………………………………..107
第七章 參考文獻……………………………………………………..108




圖目錄

Chapter 2
Figure 2.1 Alkoxysilane modified polymer structure…………………...10
Figure 2.2 Semi-IPN structure…………………………………………..11
Figure 2.3 IPN structure…………………………………………….......12
Figure 2.4 Polymer containing silica on the side chain…………………14
Figure 2.5 Principle of total reflection in the waveguide materials……..26
Figure 2.6 Scheme for planar optical waveguide……………………….29
Figure 2.7 Scheme for channel waveguide……………………………..29
Chapter 3
Figure 3.1 Flow diagram for experiment………………………………..51
Figure 3.2 Flow diagram for synthesis of organic-inorganic hybrid
materials…………………………………………………….52
Figure 3.3 Sample preparation by UV-curing…………………………..56
Chapter 4
Figure 4.1 FT-IR spectra for sol-gel reaction between copolymer and tetraethoxy silane……………………………………………63
Figure 4.2 TGA thermogram of B series………………………………..66
Figure 4.3 Plot of decomposition temperature(Td) vs BA content……...67
Figure 4.4 TGA thermogram of S series………………………………...67
Figure 4.5 Plot of decomposition temperature (Td) vs silica content…...68
Figure 4.6 TGA thermogram of T series………………………………..68
Figure 4.7 Plot of decomposition temperature (Td) vs TEGDA content..69
Figure 4.8 TGA thermogram of M80…………………………………...69
Figure 4.9 DSC thermogram of B series………………………………..71
Figure 4.10 Plot of Tg vs BA content in B series……………………….71
Figure 4.11 DSC thermogram of S series……………………………….72
Figure 4.12 DSC thermogram of T series……………………………….72
Figure 4.13 DSC thermogram of M80………………………………….73
Figure 4.14 TMA thermogram of S series………………………………76
Figure 4.15 Plot of CTE vs silica content in S series…………………...76
Figure 4.16 TMA thermogram of T series………………………………77
Figure 4.17 Plot of CTE vs TEGDA content in T series………………..77
Figure 4.18 TMA thermogram of D series and M80……………………78
Figure 4.19 UV-vis spectra for S series…………………………………81
Figure 4.20 UV-vis spectra for T series…………………………………82
Figure 4.21 UV-vis spectrum for M80………………………………….82
Figure 4.22 Refractive index curve of S series………………………….83
Figure 4.23 RI values vs silica content in S series……………………...84
Figure 4.24 Extinction coefficient curve of S series……………………84
Figure 4.25 Refractive index curve of T series………………………….85
Figure 4.26 RI values vs TEGDA content in T series…………………..85
Figure 4.27 Extinction coefficient curve of T series……………………86
Figure 4.28 Refractive index curve of M80…………………………….86
Figure 4.29 Extinction coefficient curve of M80……………………….87
Figure 4.30 Hardness for S series……………………………………….92
Figure 4.31 Hardness for T series……………………………………….92
Figure 4.32 Hardness for D series………………………………………93
Figure 4.33 Tensile modulus for S series……………………………….93
Figure 4.34 Tensile modulus for T series……………………………….94
Figure 4.35 Tensile modulus for D series……………………………….94
Figure 4.36 No crack point at 5N for M80……………………………...97
Figure 4.37 Crack point at 12.5 for M80………………………………..97
Figure 4.38 Scratch properties for S series……………………………...98
Figure 4.39 Scratch properties for T series……………………………...98
Figure 4.40 Scratch properties for D series……………………………..99
Figure 4.41 Moisture absorption properties for S series………………102
Figure 4.42 Moisture absorption properties for T series………………102
Figure 4.43 Surface morphology of M80 nanocomposite……………..103
Figure 4.44 Surface morphology and nanoparticle size of M80 nanocomposite……………………………………………104














表目錄

Chapter 1
Table 1.1 Requirements for optical materials…………………………….2
Chapter 2
Table 2.1 Application and development of organic-inorganic hybrid……5
Table 2.2 Characteristics of polymer materials from different manufactories…………………………………………………31
Table 2.3 The standards of optical waveguides for single mode and multimode…………………………………………………….38
Table 2.4 Organic-inorganic hybrid optical devices…………………….40
Chapter 4
Table 4.1 Chemical compositions of copolymer………………………..61
Table 4.2 Chemical compositions of copolymer-SiO2………………….61
Table 4.3 Chemical compositions of organic-inorganic hybrid materials62
Table 4.4 TGA results of organic-inorganic hybrid materials………......66
Table 4.5 CTE values for organic-inorganic hybrid materials ………….75
Table 4.6 Stability of B series…………………………………………...79
Table 4.7 NIR absorption for CH and OH bonding……………………..81
Table 4.8 Mechanical properties for S series……………………………90
Table 4.9Mechanical properties for T series…………………………….90
Table 4.10 Mechanical properties for D series and M80……………..…91
Table 4.11 Scratch properties for component…………………………...96
Table 4.12 Moisture absorption properties for component…………….101
Table 5.1 Properties for M80…………………………………………..106
陳安秀,“以溶膠-凝膠法製備有機-無機混成材料”, 強化塑

膠, 2001, 09, 8-16

張光偉,“有機-無機混成材料及其應用趨勢”, 化工資訊, 1998,

03, 36-43

陳文章, “以溶凝膠法(Sol-Gel Process)製備有機/無機混成(Hybrid)材

料” , 化工, 1999, 10, 56-62

侯光軍,“積體光學之發展”, 空軍學術月刊, 1975, 11, 49-55

金進興,“光電構裝用之有機光波導材料”, 電子構裝技術特刊,

2001, 7, 144-149

江選雅, 張至芬,“聚醯亞胺樹脂在<光纖通訊>的應用”, 2002, 6,

化工資訊, 46-53

張光偉, 蘇忠傑,“平面光波導材料與製程”, 2000, 11, 化工資訊,

27-35


張光偉,“奈米混成平面光波導材料”, 2002, 8, 化工資訊, 16-21
吳清沂,“積體光學簡介與發展趨勢”, 1988, 9, 科學新知, 30-36
田珮,張光偉,“平面光波導材料與製程”, 2003, 8,塑膠資訊,15-22



Born M., Wolf E., “Electromagnetic potentials and polarization principles

of optic”, 7th edition, Pergamon, New York, 1999

Bourgeat-Lami E., Tissot I., Lefebvre F., Macromolecules, 2002, 35,

6185-6191

Brandrup J., Immergut E.H., “Polymer handbook, third edition”, Wiley,

New York, 1966

Brinker C.J., Scherer G.W., “Sol-gel science”, Academic Press, Inc.,

San Diego, 1990

Capek I., Potisk P., Eur. Polym. J., 1995, 31, 1296-1277

Chan C.K., Chu I.M., Polymer, 2001, 42, 6823-6831

Chen W.C., Lee L.H., Chen B.F. and Yen C.T., J. Mater. Chem., 2002, 12,

3644-3648

Cho J.W., Sul K.I., Polymer, 2001, 42, 727-736

Costa R.O.R., Lameiras F.S., J. Sol-Gel Sci. Tech., 2003, 27, 355-361

Czerwinski W.K., Macromolecules 1995, 28, 5405-5410

Gu G.T., Zhang Z.J. , Dang H.X., Appl. Sur. Sci., 2004, 221, 129-135

Hsiue G.H., Kuo W.J., Huang Y.P., Jeng R.J., Polymer, 2000, 41,

2813-2825

Hungsperger R. G., “Integrated optics- theory and technology 5th

edition”, Berlin, New York, 2002

Iler R.K., “The chemistry of silica solubility, polymerization, colloid

and surface properties, and biochemistry”, Wiley, New York, 1979

Innocenzi P., Brusatin G., J. Non-Cryst. Solids, 2004, 333, 137-142

Innocenzi P., Martucci A., Guglielmi M., Armelao L., Pelli S.,

Righini G.C., Battaglin G.C., J. Non-Cryst. Solids, 1999, 259, 182-190

Lee L.H., Chen W.C., Chem. Mater., 2001, 13, 1137-1142

Michel P., Dugas J., Cariou J.M., Martin L., J. Macromol. Sci.

Phys. B 25, 1986, 4, 379

Moujoud A., Saddiki Z., Touam T., Najafi S.I., Thin Solid Films,

2002, 422, 161-165

Muh E., Frey H., Klee J. E., Mulhaupt R., Adv. Funct. Mater.,

2001, 11,425-429

Ochi M., Takahashi R., Terauchi A., Polymer, 2001, 42, 5151-5158

Odian G., “Principles of polymerization”, Third Edition, Wiley,

New York, 1991



Ogoshi T., Itoh H., Kim K.M., Chujo Y., Macromolecules, 2002, 35,

334-338

Oubaha M., Smaihi M., Etienne P., Coudray P. and Moreau P., J.

Non-Cryst. Solids, 2003, 318, 305-313

Pappas S.P., “UV curing : science and technology”, Technology

Marketing Corporation, Norwalk city, Connecticut, 1985

Park J.U., Kim W.S., Bae B.S., J. Mater. Chem., 2003, 13, 738-741

Pavia D.L., Lampman G.M., Kriz G.S., “Introduction to Spectroscopy”,

Second Edition, Saunders College Publishing, Was hington, 1992
Prod''homme L., Phys. Chem. Glasses 4, 1960, 119

Que W., Zhou Y., Lam Y.L., Chan Y.C., Kam C.H., Appl. Phys. A,

2001, 73, 171-176

Que W.X., Hu X.,J. Phys. D: Appl. Phys., 2003, 36, 908-914

Que W.X., Zhang Q.Y., Chan Y.C., Kam C.H., Comp. Sci. Tech.,

2003, 63, 347-351

Wang X.J., Xu L., Li D.X., Liu L.Y., Wang W.C., J. of Appl. Phy.,

2003, 6, 4228-4230

Wei Y., Jin D.L., Yang C.C., Kels M.C., Qiu K.Y., Mater. Sci. Eng. C,

1998, 6, 91-98

Wu K.H., Chang T.C., Yang J.C., H.B. Chen,J. Appl. polym. Sci.,

2001, 79, 965-973

Xu C.Z., Eldada L., Wu C.J., Norwood R.A., Shacklette L.W.,

Yardley J.T., Wei Y., Chem. Master., 1996, 8, 2701-2703

Xu J., Aubonnet S., Barry H. F. and MacCraith B. D., Materials

Letters, 2003, 57, 4276-4281
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔