(18.232.50.137) 您好!臺灣時間:2021/05/06 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊舒云
研究生(外文):Shu-Yun Chuang
論文名稱:車輛行駛車道偏離警示系統之開發研究
論文名稱(外文):A Study On A Vision-based Roadway Departure Warning System
指導教授:丁肇隆丁肇隆引用關係林銘崇林銘崇引用關係
指導教授(外文):Chao-Lung TingMing-Chung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:65
中文關鍵詞:警示車道偏離
外文關鍵詞:daparturewarning
相關次數:
  • 被引用被引用:2
  • 點閱點閱:235
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在智慧型運輸系統中,釵h關於碰撞警示和避免碰撞的系統被開發來降低意外事故發生的機率;故精確的測量出障礙物的位置及車輛本身在道路中的相對位置是非常重要的。本系統係以影像視覺為基礎,將路面影像經由裝置於車內照後鏡下方之攝影機傳入,取出影像中欲處理的區域,透過影像處理的方法,將道路標線和路面區分出來。利用一套全新的逆透視轉換公式將影像座標系統轉換回真實世界中的座標。再利用均方值誤差法把邊界偵測出的物體,將非車道標線的部分除去,僅保留車道標線的部分。從找出之車道線近似方程式和車輛之相對位置,及利用影像計算出的車速,判斷車輛是否行使於車道之安全範圍內,作警示駕駛者之用,此為本論文之主要目的。

Recently, intelligent vehicle systems have been developed to reduce and/ or avoid car collisions. Accurate detections of the objects on the road and the relative positions of vehicles to the lane are very important in the development of intelligent vehicle. This system is vision-based. The road images are captured by a camera mounted in a car. The domain of interest will be decided first from each image, and then the lane markers on roads are detected by image processing. An Inverse Perspective Mapping(IPM)is used to transform the image coordinates into world coordinates. Then edge detection is utilized to eliminate the portions of non-markers from the image and to save the portions of lane markers. Finally, the relative position between the lane and the vehicles can be determined to see if the vehicle is safe or not. If the situation is probably dangerous, then a warning is provided to the driver.

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
符號說明 Ⅷ
第一章 前言 1
1.1 研究動機與目的 1
1.2 相關文獻探討 4
1.3 論文架構 11
第二章 系統架構 12
2.1 設備裝置 12
2.2 基本假設 13
2.3 相機校正 13
2.4 影像處理流程 15
2.4.1 影像擷取 16
2.4.2 影像處理 17
2.4.3 逆透視轉換 19
2.4.4 道路標線識別 23
2.4.5 警示系統 23
第三章 道路識別 24
3.1 處理步驟 24
3.2 邊界偵測 24
3.2.1 車道標線之特徵 24
3.2.2 邊界偵測介紹 25
3.3 道路標線識別 28
3.4 車速計算 31
3.4.1 車速計算之方法介紹 31
3.4.2 車速計算之範例 37
3.5 車道偏離警示系統 38
3.6 即時 39
第四章 實驗結果 41
4.1 作業系統環境 41
4.2 相機校正 41
4.3 影像擷取及處理 42
4.4 逆透視轉換 46
4.5 道路標線識別 50
4.6 車速計算 52
4.7 車道偏離警示系統 55
第五章 結論與未來目標 58
參考文獻 61


1.Bertozzi, M., and A. Broggi, 1996. “Real-Time Lane and Obstacle Detection on the GOLD System,” Proceedings IEEE Intelligent Vehicles Symposium, pp. 213-218.
2.Bertozzi, M., and A. Broggi, 1998. “GOLD: A Parallel Real-Time Stereo Vision System gor Generic Obstacle and Lane Detection,” in IEEE Transactions on Image Processing, vol. 7, No. 1, pp. 62-81.
3.Bertozzi, M., A. Broggi, and A. Fascioli, 1998. “Stereo Inverse Perspective Mapping: Theory and Applications,” in Image and Vision Computing Journal, vol. 8, no. 16, pp. 585-590.
4.Bertozzi, M., A. Broggi, and A. Fascioli, 2000. “Vision-based intelligent vehicles: State of the art and perspectives,” in Robotics and Autonomous Systems, 32:1-16.
5.Broggi, A., 1995a. “A Massively Parallel Approach to Real-Time Vision-Based Road Markings Detection,” in Proceedings IEEE Intelligent Vehicles ’95, Masaky, I.(Ed), pp. 84-89.
6.Broggi, A., 1995b. “Robust Real-Time Lane and Road Detection in Critical Shadow Conditions,” in Proceedings IEEE International Symposium on Computer Vision, Coral Gables, Florida, pp. 19-21. IEEE Computer Society.
7.Broggi, A., and S. Berte, 1995. “Vision-based road detection in automotive systems: A real-time expectation-driven approach,” Journal of Artificial Intelligence Research, vol. 3, pp. 325-348.
8.Chen, M., T. Jochem, and D. Pomerlean, 1995. “AURORA: A Vision-based Roadway Departure System,” Proceeding of IEEE Conference on Intelligent Robots and Systems, Vol. 1, pp. 243-248.
9.Cumani, A., and A. Guiducci, 1995. “Geometric camera calibration: the virtual camera approach,” in Mach. Vision Appl. 8, pp. 375-384.
10.Dickmanns, E. D., and B. D. Mysliwetz, 1992. “Recursive 3-D road and relative ego-state recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 199-213.
11.Duda, R., and P. Hart, 1972. “Use of the Hough transform to detect lines and curves in pictures,” Communications of the ACM, vol. 15, pp. 11-15.
12.Faig, W., 1973. “Parameters of interior orientation and their correlations(for cameras),” in Proc. Am. Soc. Photogrammetry Symp. Remote Sensing in Oceangraphy, Lake Buena Vista, FL, pp. 154-169.
13.Faugeras, O. D., and G. Toscani, 1986. “The Calibration problem for stereo,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami Beach, pp. 15-20
14.Faugeras, O. D., Q. T. Luong, and S. J. Maybank, 1992. “Camera self-calibration: Theory and experiments,” in Computer Vision ECCV 92, Santa Margherita, Italy, pp. 321-334.
15.Gonzalez, J. P., and Ozguner, U., 2000. “Lane Detection Using Histogram-Based Segmentation and Decision Trees,” in Proc. IEEE Intelligent Transportation Systems, pp. 346-351.
16.Gremban, K. D., C. E. Thorpe, and T. Kanade, 1988. “Geometric camera calibration using systems of linear equations,” in Proc. Image Understabding Workshop, pp. 820-825.
17.Grosky, W. I., and L. A. Tamburino, 1987. “A unified approach to the linear camera calibration problem,” in Proc. First Int. Conf. on Computer Vision, London, pp. 511-515.
18.Guiducci, A., 2000. “Camera Calibration for Road Applications,” in Computer Vision and Image Understanding 79, pp. 250-266.
19.Holt, R. J., and A. N. Netravali, 1991. “Camera calibration problem: some new results,” in CVGIP: Image Understanding 54, pp. 368-383.
20.Horaud, R., B. Conio, and O. Leboulleux, 1989. “An analytic solution for the perspective 4-point problem,” in Comput. Vision, Graphics, Image Process. 47, pp. 33-44.
21.Hough, P., 1962. “Method and means of recognizing complex patterns,” U.S. Patent 3069654.
22.Ito, M., and A. Ishii, 1994. “A non-iterative procedure for rapid and precise camera calibration,” in Pattern Recognition 27, pp. 301-310.
23.Jochem, T. M., D. A. Pomerleau, and C. E. Thorpe, 1993. “MANICA: A next generation neurally based autonomous road follower,” in Proc. Int. Conf. Intelligent Autonomous System: IAS-3, Pittsburgh, PA.
24.Kanatani, K., and Y. Onodera, 1991. “Anatomy of camera calibration using vanishing points,” in IEICE Trans. Inform. Systems 74, pp. 3369-3378.
25.Kaske, A., Husson, R., and Wolf, D., 1995. “Chi-Square Fitting of Deformable Templates for Lane Boundary Detection,” in IAR Annual Meeting’95, Grenoble France.
26.Kaske, A., Wolf, D., and Husson, R., 1997. “Lane Boundary Detection Using Statistical Criteria,” in International Conference on Quality by Artificial Vision, QCAV’97, pp. 28-30, Le Creusot, France.
27.Kluge, K., and S. Lakshmanan, 1995. “A deformable template approach to lane detection,” in Proc. IEEE Intelligent Vehicles ’95, Detroit, MI, pp. 54-59.
28.Koller, D., J. Malik, Q-T. Luong, and J. Weber, 1995. “An integrated stereo-based approach to automatic vehicle guidance,” in Proc. Fifth ICCV, Boston, MA, pp. 12-20.
29.Kreucher, C., S. Lakshmanan, and K. Kluge, 1998. “A Driver Warning System Based on the LOIS Lane Detection Algorithm,” in Proceeding of IEEE International Conference on Intelligent Vehicles, pp. 17-22.
30.Lakshmanan, S., and K. Kluge, 1995. “Lane Detection for Automotive Sensor,” in ICASSP, pp. 2955-2958.
31.Mallot, H. A., H. H. Bulthoff, J. J. Little, and S. Bohrer, 1991. “Inverse perspective mapping simplifies optical flow computation and obstacle detection,” Biological Cybernetics 64, pp. 177-185.
32.Martins, H. A., J. R. Birk, and R. B. Kelley, 1981. “Camera models based on data from two calibration planes,” in Comput. Graphics Image Process. 17, pp. 173-180.
33.Maybank, S. J., and O. D. Faugeras, 1992. “A theory of self-calibration of a moving camera,” in Int. J. Comput. Vision 8, pp. 123-151.
34.McDonald, J., J. Franz, and R. Shorten, 2001. “Application of the Hough Transform to Lane Detection in Motorway Driving Scenarios,” in Proc. of the Irish Signals and Systems Conference, R Shorten, T. Ward, T. Lysaght (Eds).
35.Mohr, R., B. Boufama, and P. Brand, 1993. “Accurate Relative Positioning from Multiple Images,” in Technical Report RT 102, IMAGE-20 LIFIA, Lifia-Image-Inria, Grenoble, France.
36.Pomerleau, D., 1995. “RALPH: Rapidly Adapting Lateral Position Handler,” Proceedings of the Intelligent Vehicles’95 Symposium, pp. 506-511.
37.Pomerlau, D., and T. Jochem, 1996. “Rapidly Adapting Machine Vision for Automated Vehicle Steering,” IEEE Expert, 11(2).
38.Pratt, W. K., 2001. “Digital Image Processing,” John Wilet & Sons, Inc., third edition.
39.Sid-Ahmed, M. A., and M. T. Boraie, 1990. “Dual camera calibration for 3D machine vision metrology,” in IEEE Trans. Instrumentation and Measurement 39, pp. 512-516.
40.Sobel, I., 1974. “On calibrating computer controlled cameras for perceiving 3D scenes,” in Artificial Intelligence 5, pp. 185-198.
41.Taylor, C. J., Kosecka, J., Blasi, R., and Malik, J., 1999. “A comparative study of vision-based lateral control strategies for autonomous highway driving,” in International Journal of Robotics Research, 18(5):442-453.
42.Thorpe, C., Hebert, M. H., Kanade, T., and Shafer, S. A., 1988. “Vision and navigation for the Carnegie-Mellon Navlab,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(3):362-373.
43.Tsai, R. Y., 1986. “An efficient and accurate camera calibration technique for 3d machine vision,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami Beach, pp. 364-374.
44.Wang, L., and W. Tsai, 1991. “Camera calibration by vanishing lines for 3D computer vision,” in IEEE Trans. Pattern Anal. Mach. Intelligence 13, pp. 370-376.
45.Wang, Y., D. Shen, and E. K. Teoh, 1998. “Lane detection using Catmull-Rom spline,” in IEEE International Conference on Intelligent Vehicle ’98, pp. 51-57.
46.Weber, J., D. koller, Q-T. Luong, and J. Malik, 1995. “New results in stereo-based automatic vehicle guidance,” in Proc. IEEE Intelligent Vehicles ’95, Detroit, MI, pp. 530-535.
47.Weng, J., P. Cohen, and M. Herniou, 1992. “Camera calibration with distortion models and accuracy evaluation,” in IEEE Trams. Pattern Anal. Mach. Intelligence 14, pp. 965-980.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔