(18.232.50.137) 您好!臺灣時間:2021/05/06 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王薇
研究生(外文):Wei Wang
論文名稱:利用土壤有機質中δ13C值探討勝光地區植群之改變
論文名稱(外文):Vegetation Changes in Sheng-Guang Area using δ13C Values of Soil Organic Matter
指導教授:王亞男王亞男引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:土壤有機質植群演替δ13C值森林火災
外文關鍵詞:vegetation changsoil organic matter13C value
相關次數:
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

在自然環境下,森林生態常會受到人為因子直接的擾動與破壞,或是自然因素的干擾,進而造成植群變遷並改變森林的各項弁遄A或影響原有生態系的演進。本研究之目的即選擇發生火燒之試驗地,利用土壤有機質(SOM)中天然碳同位素豐度(abundance),來研究過去至現在植群間的變化,瞭解此生態系的擾動情形。本研究之取樣時間為2003年7月,於勝光地區採集林火區試驗地及未發生火災之對照區試驗地之土壤及植物樣本,取樣時記錄樣區之環境資料,如方位、高度、坡度及植生。樣本取回後,將土壤樣本風乾過篩,分析各項基本理化性質、土壤礦物組成、有機碳官能基分布,及有機質中之穩定性碳同位素。植體則將其烘乾磨碎後,分析有機碳官能基分布,以及植體中之穩定性碳同位素。結果顯示,研究區呈現一高度淋洗的狀態,土壤呈強酸性,唯火燒後,因灰份的加入,使土壤之pH值相對較高。土壤礦物組成顯示樣區中土壤礦物以蛭石、高嶺石及伊萊石為主,並含有伊萊石-蛭石的混層礦物,及少量的綠泥石。植體和土壤中之有機碳官能基種類主要為烷基碳(alkyl-C)、含氮烷基碳(N-alkyl-C)、含氧烷基碳(O-alkyl-C)、乙縮醛碳(acetal-C)、芳香基碳(aromatic-C)、羧基碳(carboxyl-C)與酚基碳(phenolic-C)等七種,且皆以含氧烷基碳所佔比例為最高。由於C3型植物的δ13C值範圍在-32~ -20 ‰之間,而C4植物介於-17~ -9 ‰之間,故藉由δ13C值的分析,可明確地分辨出研究區中土壤有機質的來源,並利用垂直剖面SOM δ13C值的分佈,進而推測剖面形成過程中,植群結構組成的改變。在未燃燒之臺灣二葉松林樣區中,表層SOM δ13C值為-21.87 ‰,而下層皆約為-18 ‰,顯示過去高山芒的數量可能較現在多,但植群的種類無多大改變。在火燒後之臺灣二葉松林中,土壤樣體之δ13C值較接近未燃燒混合林中較深層土壤樣體的δ13C值,約介於-24.32~ -23.75 ‰ 之間,故在火災發生前,此地區亦含有其他C3種類的植物,或植群組成與現在的混合林相似。未燃燒混合林土壤樣體表層0~10 cm處的δ13C值,為所有土壤樣體中負值最大(-26.96 ‰),顯示近期地表之植群以C3種類的植物為多,含有較多之灌木類及闊葉樹種。在火燒後混合林土壤樣體中,植群種類變動較大,以前森林植物即C3型植物較多,但卻一度增加釵h的草原即C 4型植物,最後又再逐漸被森林所取代,充分顯示此區曾因外來因素而發生擾動,進而改變植物的組成。上述結果表明,應用δ13C技術可以描示出各樣區中優勢樹種、植群組成之變動,並進而推論試驗地中過去遭受擾動之情形。
Summary

Forest ecosystems may be interfered and damaged directly or indirectly by human and nature factors that result in changes of plant vegetation, forest function and ecosystem evolution. The objective of this study was to understand the plant vegetation change and disturbance suffered of forests using carbon isotope ��13C abundance of soil organic matter (SOM) in soil profile. The study area was located at Sheng-Guang region. Soil and plant samples were collected on July, 2003 from the burned pine, burned mixed forest, pine control and mixed forest control zones, respectively. During the sampling, these environmental conditions such as location, altitude, slope and vegetation of sample points were recorded. Soil samples were air-dried in the laboratory and passed through 2 mm sieve for analysis of soil physico-chemical properties, soil mineralogical compositions, functional group compositions and isotope ��13C abundance in SOM. Plant samples were oven-dried at 60�aC and ground for assays of carbon functional group and ��13C abundance. High leaching potentials are present in the forest zones with low soil pH, while in the burned zones soil pH is higher due to the mixture of burned ashes compared with the unburned zones. In the soil mineralogical compositions, vermiculite, kaolin and illite were found as the main types with mixed-layered clays in soil samples. The ��13C-NMR analysis indicated that functional groups, including alkyl-C, N-alkyl-C, O-alkyl-C, acetal-C, aromatic-C, carboxyl-C and phenolic-C are present in plant and SOM. The O-alkyl-C functional group was the major component. Values of ��13C in SOM were corresponding to the sources of plant vegetation. Generally, the abundances of ��13C of C3 and C4 range from –32 to -20 ‰ and from –17 to -9 ‰, respectively. Hence, the change of plant vegetation could be inferred by the values of SOM ��13C in soil profile. In the unburned pine (Pinus taiwanensis Hayata) zone, ��13C of SOM in the surface horizon was –21.87 ‰ and approximate –18 ‰ in the bottom horizon, indicating that plant types had no great change but abundance of silvergrass (Miscanthus transmorrisonensis) exist in the record. In the burned pine zone, the values of ��13C were in the range of –24.32~ -23.75 ‰ that was similar to the unburned mixed forest, indicating similar plant vegetation as current mixed forest exist before the recent burning. The values of ��13C of SOM in the mixed forest was the lowest of –26.96 ‰ in 0-10 cm soil depth, suggesting that more C3 plants included forest and bushes were present in this zone. However, in the burned mixed forest zone, results of ��13C values indicated that C3 plant had been dominated in this zone, C4 plant communities increased at some time and then decreased. Such a process in the burned mixed forest zone fully elucidated that external factor once disturbed the evolution of the forest ecosystem. Hence, the ��13C value can be used successfully in understanding of the vegetation dynamics and disturbances suffered of each site in the history.
目錄
頁次
中文摘要 --------------------------------------------- I
英文摘要 --------------------------------------------- III
目錄 ------------------------------------------------- V
表目錄 ----------------------------------------------- VII
圖目錄 -----------------------------------------------VIII
第一章、前言 ----------------------------------------- 1
第二章、前人研究 ------------------------------------- 3
第一節、火燒發生統計 ------------------------------- 3
第二節、有機碳同位素之原理 ------------------------- 5
(一)同位素之定義 -------------------------- 5
(二)同位素分異 ---------------------------- 5
(三)穩定性同位素比值的表示方式 ------------ 6
(四)穩定性碳同位素在植物中的變異 ---------- 7
第三節、有機碳同位素之應用 --------------------- --- 10
第三章、材料與方法 ----------------------------------- 12
第一節、研究區域 ----------------------------------- 12
第二節、土壤及植物樣品之採集與處理------------------- 16
第三節、樣品分析方法 ------------------------------- 17
(一)土壤物理性質分析 ---------------------- 17
1.水分含量 ---------------------------- 17
2.粒徑分析 ---------------------------- 17
(二)土壤化學性質分析 ---------------------- 18
1.pH值 ------------------------------ 18
2.全碳、全氮量 ------------------------ 18
3.可交換性陽離子 ---------------------- 19
4.陽離子交換容量 ---------------------- 19
5.鹽基飽和度 -------------------------- 19
(三)土壤礦物之組成鑑定 -------------------- 20
(四)13C橫偏極化魔角自旋固態核磁共振光譜分析- 22
(五)土壤有機質中穩定性碳同位素分析 -------- 22
(六)新鮮植體之穩定性碳同位素分析 ---------- 23
第四章、結果與討論 ----------------------------------- 24
第一節、土壤樣體之理化性質 ------------------------- 24
(一)土壤樣體之物理性質 -------------------- 24
(二)土壤樣體之化學性質 ------------------- 27
1. pH值 ------------------------------ 27
2.有機碳量、全氮量 -------------------- 27
3.可交換性陽離子 --------------------- 28
4.陽離子交換容量 ---------------------- 28
5. 鹽基飽和度-------------------------- 28
第二節、黏土礦物之組成與鑑定 --------------------- 31
1.未燃燒之二葉松林土壤樣體 ----------------- 31
2.火燒後之二葉松林土壤樣體 ----------------- 35
3.未燃燒之混合林土壤樣體 ------------------- 35
4.火燒後之混合林土壤樣體 ------------------- 35
第三節、植體與土壤中有機碳官能基的分布------------- 47
(一)有機碳官能基在13C NMR中的化學位移------ 47
(二)植體中有機碳官能基的分布---------------- 48
(三)土壤中有機碳官能基的分布---------------- 48
第四節、植體與土壤有機質中穩定性碳同位素組成 ------- 58
(一)植體中之δ13C值------------------------ 58
(二)土壤有機質中δ13C值的分佈 ------------- 59
第五章、結論 ---------------------------------------- 66
參考文獻 ------------------------------------------- 68
附錄一 ------------------------------------------- 79
參考文獻

王明光 2000. 土壤環境礦物學。藝軒圖書出版社。

林昭遠 1991. 野火影響森林土壤性質之研究。國立中興大學植物學研究所博士論文。

林朝欽 1992. 臺灣地區國有林之森林火分析(1963-1991年)。林業試驗所研究報告季刊7(2):169-178。

林朝欽 1993. 國有林大甲事業區之森林火災及防火線。林業試驗所研究報告季刊8(2):159-167。

林朝欽 2001. 從千禧年美國林火季探討—臺灣林火管理策略。臺灣林業27(1):13-17。

汪靜明 1995. 武陵地區環境生態。內政部營建署雪霸國家公園管理處,p22。

洪泉旭 1993. 臺灣二葉松林火燒後植群生態之研究。國立中興大學森林學研究所碩士論文。

陳正改、邱永和、許翠玲 1983. 森林火災之相關氣象條件研究。臺灣林業9(11):18-29。

陳源長 1967. 臺灣之森林火災。臺灣銀行季刊18(2):329-360。

劉棠瑞與蘇鴻傑 1978. 大甲溪上游臺灣二葉松天然林之群落組成及相關環境因子之研究。台大實驗林研究報告121: 207-239。

蔣先覺 1994. 臺灣高山森林土壤形態、性質與分類。林業試驗所。

蘇鴻傑 1992. 臺灣之植群:山地植群帶與地理氣候區。中央研究院植物所專刊第十一號。pp.39-53。
Abelson, P. H. and T. C. Hoering. 1961. Carbon isotope fractionation in formation of amino acid by photosynthetic organism. Proc. Nat´l Acad. Sci. USA. 47:623-625.

Alexandre, A., J. D. Meunier, A. Marotti, and F. Soubies. 1999. Late Holocene phytolith and carbon-isotope record from a Latosol at Salitre, South-Central Brazil. Quaternary Research 51:187-194.

Ambrose, S. H. and N. E. Sikes. 1991. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 253:1402-1405.

Balesdent, J., A. Mariotti, and B. Guillet. 1987. Natural 13C abundance as a tracer for soil organic matter dynamic studies. Soil Biol. Biochem. 19(1):25-30.

Balesdent, J., C. Girardin, and A. Mariotti. 1993. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology 74(6):1713-1721.

Barrett, T. M. 2001. Models of vegetative change for landscape planning: a comparison of FETM, LANDSUM, SIMPPLLE, and VDDT. USDA Forest Service Gen. Tech. Rep. pp.1-14.

Bassham, J. A. 1971. Photosynthetic carbon metabolism. Proc. Nat´l. Acad. Sci. USA. 68:2877-2882.

Beerling, D. J. and F. I. Woodward. 1993. Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum. New Phytol. 125:641-648.

Bender, M. M. 1968. Mass-spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10: 468-472.

Bender, M. M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10: 1239-1244.

Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials: II atmospheric, terrestrial, marine, and freshwater environments. In: Cloeman, D. C. and Fry, B. (eds) Carbon Isotope Techniques. Academic Press, New York. pp.173-185.

Boutton, T. W., S. R. Archer, A. J. Midwood, S. F. Zitzer, and R. Bol. 1998. δ13C values of soil organic corbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5-41.

Cerling, T. E., J. Quade, Y. Wang, and J. R. Bowman. 1989. Carbon isotopes in soils and paleosols as ecology and palaeoecology indicators. Nature 341:138-139.

Chiang, P. N., M. K. Wang, C. Y. Chiu, H. B. King, and J. L. Hwong. 2004. Changes in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratios of soil organic matter. Chemosphere 54:217-224.

Coleman, D. C. and B. Fry. 1991. Carbon isotope techniques. Academic Press, Inc. New York. pp.155-184.

Craig, H. 1957. Isotope standards for carbon and oxygen and correlation factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12:133-149.

Criss, R. E. 1999. principles of stable isotope distribution. Oxford University Press, New York. p254.

Debano, L. F. and C. E. Conrad. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59(3):489-497.

Dzurec, R. S., T. W. Boutton, M. M. Caldwell, and B. N. Smith. 1985. Carbon isotope ratios of soil organic matter and their use in assessing community composition change in Curlew Valley, Utah. Oecologia 66:17-24.

Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503-537.

Farquhar, G. D., M. H. O´Leary, and J. A. Berry. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australia Journal of Plant Physiology 9:121-137.

Faure, G.. 1986. Principles of Isotope Geology. John Wiley & Sons, Inc. New York. p589.

Fontugne, M., C. Hatté, D. D. Rousseau, P. Antoine, L. Zöller, T. L. Nadine, and I. Bentaleb. 1998. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology 26(7):583-286.

Gardner, W. H. and K. H. Hartge. 1986. Bulk density. In A. Klute(ed.) Methods of soil analysis, Part 1: Physical and mineralogical methods. 2nd edition. Agronomy monograph 9:493-544.

Gat, J. R. 1981. Isotope fractionation. In Gat, J. R. and Gonfiantini, R.(Editors)"Stable isotope hydrology", IAEA. pp.21-34.

Goh, K. M., T. A. Rafter, and J. D. Walker. 1976. The accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on Aeolian sand in New Zealand. J. Soil Sci. 27:89-100.

Goh, K. M., J. D. Stout, and T. A. Rafter. 1977. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils. Soil Sci. 123:385-391.

Grier, C. C. 1975. Wildfire effects on nutrient distribution and leaching in a coniferous ecosystem. Can. J. For. Res. 5:599-607.

Gu, Z., Q. Liu, B. Xu, J. Han, S. Yang, Z. Ding, and T. Liu. 2003. Climate as the dominant control on C3 and C4 plant aboundance in the Loess Plateau: Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences. Chinese Science Bulletin 48(12):1271-1276.

Guggenberger, G., B. T. Christensen, and W. Zech. 1994. Land-use effects on the composition of organic matter in particle-size separates of soils. European J. of Soil Sci. 45:449-458.

Guillet, B., P. Faivre, A. Mariotti, and J. Khobzi. 1988. The 14C dates and 13C/ 12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: examples from Colombia (South America). Paleogeography, Paleoclimatology, Paleoecology 65:51-58.

Hoefs, J. 1987. Stable Isotope Geochemistry. Springer-Verlag Beidelberg, New York. p241.

Hopkins, W. G. 1999. Introduction to plant physiology. John Wiley & Sons, Inc. New York. p201.

Hsieh, Y. P. 1996. Soil organic carbon pools of two tropical soils inferred by signatures. Soil Sci. Soc. Am. J. 60:1117-1121.

Jackson, M. L. 1979. Soil chemical analysis-Advanced course.(3rd printing, 1967).Published by the author. Dep. Of Soil Sci. Univ. of Wisconsin, Madison, Wis. 53760, USA.

John, W. D., R. E. Grim, and W. F. Bradley. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sed. Petrol. 24:242-251.

Jones, T. P., A. C. Scott, and D. P. Mattey. 1993. Investigations of ‘ fusain transition fossils ’ from the lower Carboniferous: Comparisons with modern partially charred wood. International Journal of Coal Geology 22: 37-59.

Jones, T. P. 1994. 13C enriched Lower Carboniferous fossil plants from Donegal, Ireland: Carbon isotope constratints on taphonomy, diagenesis and paleoenvironment. Review of palaeobotany and palynology 81:53-64.

Kelly, E. F., R. G. Amundson, B. D. Marino, and M. J. Deniro. 1991. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research 35:222-233.

Klute, A. 1986. Methods of soil analysis: Part 1- Physical and Mineralogical Methods. American Society of Agronomy.

Krishnamurthy, R. V. and S. K. Bhattacharya. 1989. Paleovegetational history in the Kashmir basin, India, derived from 13C/12C ratio in paleosols. Earth and Planetary Science Letters 95:291-296.

Kutiel, P. and A. Shaviv. 1992. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. For Ecol. Mgmt. 53:329-343.

Labis, S. M. 1992. Reading and sedimentary record: the use of stable isotopes in study of paleoceanography. Libes, S. M.(editor)“An Introduction to Marine Biogeochemistry”, John Wiley & Sons, Inc. New York. pp.557-591.

Lawal, M. M. and K. C. Chau. 1999. Effect of hill fire on upland soil in Hong Kong. For Ecol. Mgmt. 120:97-104.

Liew, P. M. and S. Y. Huang. 1994. A 5000-year pollen record from Chitsai Lake, Central Taiwan. TAO 5:411-419.

Liu, Q., S. Wang, H. Piao, and Z. Ouyang. 2003. The variation of soil organic matter in a forest-cultivation sequence traced by stable carbon isotopes. Chinese Journal of Geochemistry 22(1):83-88.

Malcolm, R. L. 1989. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic substances. John Wiley & Sons, Inc. New York. pp.339-528.

Marafa. L. M. and K. C. Chau. 1999. Morphological and chemical properties of soils along a vegetation gradient affected by fire in Hong Kong. Soil Sci. 164:683-691.

Mariotti, A. and E. Peterschmitt. 1994. Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter. Oecologia 97:475-480.

Martin. A., A. Mariotti, J. Balesdent, P. Kacelle, and R. Vuattoux. 1990. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22:517-523.

Martinelli, L. A., L. C. R. Pessenda, E. Espinoza, P. B. Camargo, E. C. Telles, C. C. Cerri, R. L. Victoria, R. Aravena, J. Richey, and S. Trumbore. 1996. Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia 106:376-381.

McPhearson, G. R., T. W. Boutton, and A. J. Midwood. 1993. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in south-eastern Arizona, USA. Oecologia 93:95-101.

Nadelhoffer, K. J. and B. Fry. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52:1633-1640.

Oades, M. 1995. Recent advances in organomineral interactions: Implications for carbon cycling and soil. CRC press/Lewis Publishers, Boca Raton. pp.119-134.

O´Brien, B. J. and J. D. Stout. 1978. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol. Biochem. 10:309-317.

O´Leary, M. H. 1981. Carbon isotope fractionation in plants. Phytochemistry 20:553-567.

O´Leary, M. H. 1988. Carbon isotope in photosynthesis. Fractionation techniques may reveal new aspects of carbon dynamics in plants. Bioscience 38(5):228-336.

O´Leary, M. H., S. Madhavan, and P. Paneth. 1992. Physical and chemical basis of carbon isotope fractionation in plants. Plant, Cell and Environment 15:1099-1104.

Page, A. L. 1982. Methods of soil analysis: Part 2- Chemical and Microbiological Properties. American Society of Agronomy.
Park, R. and S. Epstein. 1960. Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta 21:110-126.

Park, R. and S. Epstein. 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiol. 36:133-138.

Pessenda, L. C. R., B. M. Gomes, R. Aravena, A. S. Ribeiro, R. Boulet, and S. E. M. Gouveia. 1998. The carbon isotope record in soils along a forest-cerrado ecosystem transect: Rondonia state, southwestern Brazilian Amazon region. The Holocene 8(5):559-603.

Pessenda, L. C. R., S. E. M. Gouveia, R. Aravena, R. Boulet, and E. P. E. Valencia. 2004. Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quaternary International 114(1):35-43.

Peterson, B. J. and B. Fry. 1987. Stable isotopes in ecosystems studies. Ann. Rev. Ecol. Syst. 18:293-320.

Piccolo, A. and F. J. Stevenson. 1981. Infrared spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma 27:195-208.

Quade, J., T. E. Cerling, and J. R. Bowman. 1989. Development of Asian monsoon revealed by marked ecological shift during the lasted Miocene in northern Pakistan. Nature 342:163-166.

Rhoades, J. D. 1982. Cation exchange capacity. In Page, A. L. et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties. Agronomy monograph 9:149-157.

Senesi, N. and F. Sakellariadou. 1993. Trace metal ion binding by humic acids in marine and coastal sediments. The 2nd International conference on the biogeochemistry of trace element. Taipei, Taiwan, R.O.C. p36.

Servant, M., J. Maley, B. Turcq, M. L. Absy, P. Bennac, M. Fournier, and M. P. Ledru. 1993. Tropical forest changes during the late Quaternary in African and South American lowlands. Global Planet Change 7:25-40.

Smith, B. N. and S. Epstein. 1971. Two categories of 13C/12C ratios for higher plants. Plant Phytol. 47:380-384.

Spurr, H. S. and B. V. Barnes. 1980. Forest ecology. Ecology 58:16-30.

Sweda, T. 1994. Dendroclimatological reconstruction for the last sub-millennium in Central Japan. TAO 5:431-442.

Tamura, T. 1958. Identification of clayminerals from acid soils. J. Soil Sci. 9:141-147.

Thomas, G. W. 1982. Exchangeable cation. In Page, A. L. et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties. Agronomy monograph 9:149-157.

Tieszen, L. and L. Boutton. 1989. Stable carbon isotopes in terrestrial ecosystem research. Sringer-Verlag, New York. pp.167-195.

Tomkins, I. B., J. D. Kellas, K. G. Tolhurst, and D. A. Oswin. 1991. Effects of fire intensity on soil chemistry in a eucalypt forest. Aust. J. Soil Res. 29:25-47.

Troughton J. H., P. V. Wells, and H. A. Mooney. 1974. Photosynthetic mechanisms and paleoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants. Science 185:610-612.

Volkoff, B. and C. C. Cerri. 1987. Carbon isotope fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant Soil 102:27-31.

Wells, C. G. 1981. Some effects of brushfires on erosion processes in Southern California. In Erosion and Sediment Transport in Pacific Rim Steeplands. IAHS Pub. No.132. Christchurch.

Wershaw, R. L. 1985. Application of nuclear magnetic resonance spectroscopy of humic substance: Basic concepts and techniques. John Wiley & Sons, Inc. New York. pp.561-582.

Wilson, M. A. 1989. Solid-state nuclear magnetic resonance spectroscopy of humic substance: Basic concepts and techniques. John Wiley & Sons, Inc. New York. pp.309-338.

Yeh, H. W. and S. H. Chen, W. C. Chang, and W. Y. Kao. 1995. Paleolimnology of Yuan-Yang Lake based on isotope composition of organic carbon. J. Geol. Soc. China. 38:125-139.

Zhang, C., F. Chen, and M. Jin. 2003. Study on modern plant C-13 in Western China and its significance. Chinese Journal of Geochemistry 22(2):97-106.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔