(3.210.184.142) 您好!臺灣時間:2021/05/13 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉慈容
研究生(外文):Tze-Jung Yeh
論文名稱:利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒
論文名稱(外文):Reverse dot-blot hybridization method for identification of nine potyviruses
指導教授:張雅君張雅君引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:55
中文關鍵詞:晶片馬鈴薯Y屬病毒逆墨點雜合法
外文關鍵詞:Reverse dot-blot hybridizationPotyviruseschip
相關次數:
  • 被引用被引用:8
  • 點閱點閱:194
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Potyviridae科中的Potyvirus屬,是植物病毒中最大的一屬;目前所知的種類近200種,對人類的糧食及經濟作物造成的危害頗大。因為馬鈴薯Y屬病毒的種類繁多,因此發展出一套能快速檢測並區別各種病毒的鑑定方法,將有助於植物檢疫與防疫工作。生物晶片是21世紀的生物技術重點產業,最大特點就是在同一片晶片上,可同時處理多項訊息。本論文希望利用晶片和potyvirus的特性,建構potyvirus的鑑定晶片系統。晶片上的探針分為cDNA探針和寡核苷酸探針兩種,其序列位置均落在potyvirus的NIb基因3’端和CP基因5’端之間。標的物是以potyvirus的cDNA株或感染potyvirus的植物全RNA,與potyvirus的廣效性引子對進行PCR或RT-PCR反應時,加以標定得之。將cDNA探針固定在尼龍膜上後,與標的物進行逆墨點雜合反應,結果發現所製備的cDNA探針專一性很好。由此所建構的cDNA晶片可以正確地鑑定出BaRMV、PRSV、PVA、PVY、TuMV、 ZaMV和ZYMV等八種病毒單獨感染的植物樣品。此外,cDNA晶片也可以正確的鑑定出兩種或三種複合感染的植株。而為了確定寡核苷酸探針的最適長度和最佳雜合條件,我們根據ZaMV和ZYMV的序列,設計不同長度的寡核苷酸探針,結果以50 mer的效果最好。故針對不同的病毒,設計50 mer寡核苷酸探針,固定在尼龍膜上,與標的物進行逆墨點雜合反應,結果發現這些探針的專一性相當良好。由此所建構的寡核苷酸晶片可以成它a鑑定出上述八種病毒;同時也可以成它a鑑定複合感染的樣品。檢視兩種晶片的鑑定結果,雖然cDNA探針靈敏度較寡核苷酸探針為高,但是寡核苷酸探針擁有不須具備病毒cDNA株即可製備的優點。日後若有新種病毒出現或是原有病毒序列產生較大變異,則只需加入新的寡核苷酸探針即可維持鑑定晶片系統的完整性,應該是未來發展的趨勢。
The genus Potyvirus in the family Potyviridae is the largest genus of plant viruses and can infect a wide range of crop plants. Because there are about 200 species in the genus, it is important to develop a rapid identification system for potyviruses to support the tasks of plant quarantine and inspection. Biochip has become an increasing popular tool of biotechnology industry at 21 century, because it can deal with hundreds to thousands information at the same time. The aim of this thesis is to develop a potyvirus identification chip based on the traits of potyviruses and biochip. Two kinds of probes, cDNA and oligonucleotide probes were prepared, and their sequences derived from the 3’end of the NIb gene and the 5’end of the CP gene. The DIG-labeled targets were prepared from viral cDNA clones or total RNA of infected tissues by means of PCR or RT-PCR with potyvirus degenerate primers. After cDNA probes immobilized onto the nylon membrane, the targets were tested by reverse dot-blot hybridization. The results indicated that our cDNA probes had high specificity to the targets. When using our cDNA chip to test the targets derived from plant total RNAs, it could successfully identify eight potyviruses including BaRMV, PRSV, PVA, PVY, TuMV, ZaMV and ZYMV. Moreover, the cDNA chip could also identify mix infection plants with two or three kinds of potyviruses. In order to define the optimal length of oligonucleotide probe, probes with different lengths of ZaMV and ZYMV sequence were designed, and the effectiveness of probes were compared. The results revealed that the 50-mer probe of specific virus sequence gave constant positive results and thus was used for further experimental design. The specificity of 50-mer oligonucleotide probes of potyvirus tested by reverse dot-blot hybridization was satisfying. When using our oligonucleotide chip to test the targets derived from plant total RNAs, it could successfully identify the aforementioned eight potyviruses and also mix-infection samples. Comparing the results of two kinds of potyvirus chips, cDNA probes showed better sensitivity than oligonucleotide probes, but oligonucleotide probes had the advantage of preparation without viral cDNA clones. If new viruses appear or the existing viruses produce quite a few mutations, we only need to add new oligonucleotide probes to maintain the completeness of the identification chip. Therefore, oligonucleotide chip is better choice than cDNA chip and will be a novel way of rapid identification for potyviruses in the future.
中文摘要---1
英文摘要---2
第一章 前人研究---4
第一節 馬鈴薯Y屬病毒之簡介---4
第二節 生物晶片之簡介---8
第三節 逆墨點雜合反應---12
第二章 Potyvirus鑑定晶片系統之研發與建立---13
前言---13
材料與方法---14
2.1 實驗植物---14
2.2 病毒來源---16
2.3 病徵描述---16
2.4 植物全 RNA 之抽取---19
2.5 Potyvirus 廣效性引子對與種專一性引子對之設計---19
2.6 反轉錄反應---20
2.7 聚合酶鏈鎖反應---20
2.8 轉型試驗---20
2.9 質體DNA之小量製備---21
2.10 cDNA探針的製備---21
2.11 寡核苷酸探針的設計---22
2.12 標的物之製備---23
2.13 逆墨點雜合反應---23
第三章 Potyvirus鑑定晶片系統之試驗結果---25
3.1 Potyvirus廣效性引子對之檢測--- 25
3.2 cDNA探針的製備結果---25
3.3 cDNA探針的專一性---26
3.4 cDNA晶片的鑑定結果---26
3.5 寡核苷酸探針長度的試驗結果---27
3.6 寡核苷酸探針的專一性---27
3.7 寡核苷酸晶片的鑑定結果---28
第四章 討論---29
參考文獻---35
圖表---43
陳穎練。1998。天南星科植物芋頭嵌紋病毒與新potyvirus之分子選殖、特性分析及檢測系統之研發。碩士論文,國立台灣大學植物病蟲害學研究所。
黃偉洲。2001。海芋嵌紋病毒對彩色海芋生長之影響及其分子檢測系統之建立。碩士論文,國立台灣大學植物病理學研究所。
徐悅淳。2001。重要potyvirus快速鑑定系統之建立。碩士論文,國立台灣大學植物病理學研究所。
陳秀瓊。2002。以聚合酶鏈鎖反應結合基因晶片快速偵測犬病毒性疾病。碩士論文,國立台灣大學獸醫學研究所。
黃金興。2002。彩色海芋新potyvirus之分子特性分析與檢測方法之開發。碩士論文,國立台灣大學植物病理學研究所。
梁國棟。2003。最新分子生物學實驗技術。
Anthony, R. M., Brown, T. J., and French, G. L. 2000.Rapid diagnosis of bacteria by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide Array. Journal of clinical microbiology 38(2): 781-788.
Anandalakshimi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences of the United States of American 95: 13079-13084.
Bavykin, S. G., Akowski, J. P., Zakhariev, V. M., Barsky, V. E., Perov, A. N., and Mirzabekov, A. D. 2001. Portable system for microbial sample preparation and oligonucleotide microarray analysis. Applied and environmental microbiology 67(2): 922-928.
Blanc, S., Ammar, E. D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J., and Pirone, T. P. (1998). Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. Journal of general virology 79: 3119-3122.
Blanchard, A. P., Kaiser, R. J., and Hood, L. E. 1996. High-density oligonucleotide arrays. Biosensors and bioelectronics. 11:687-690.
Boonham, N., Walsh, K., Smith, P., Madagan, K., Graham, I., and Barker, I. 2003. Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. Journal of Virological Methods 108: 181-187.
Brantley, J. D., and Hunt, A. G. 1993. The N-terminal protein of the polyprotein encoded by the potyvirus tobacco vein mottle virus is an RNA-binding protein. Journal of general virology 74: 1157-1162.
Carrington, J. C., Jensen, P. E., and Schaad, M. C. 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal 14: 393-400.
Chamberlain, J. S., Farwell, N. J., Chamberlain, J. R., Cox, G. A., and Caskey, C. T. 1991. PCR analysis of dystrophin gene mutation and expression. Journal of cellular biochemistry 146: 255-259.
Chang, Y.-C., Chen, Y.-L., and Chung, F.-C. 2001. Mosaic disease of calla lily caused by a new potyvirus in Taiwan. Plant disease 85: 1289.
Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R., and Childs, G. 1999. Making and reading microarrays. Nature genetics supplement 21: 15-19.
Chen, J., Chen, J., and Adams, M. J. 2001. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Archives of Virology 146: 757-766.
Clark, M. F., and adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of general virology 34: 475-483.
Cronin, S. C., Verchot, J., Haldeman-Cahill, R., Schaad, M. C., and Carrington, J. C. 1995. Long-distance movement factor: A transport function of the potyvirus helper component proteinase. Plant cell 7: 549-559.
Doughtry, W. G., and Hiebert, E. 1980. Translation of potyvirus RNA in a rabbit reticulocyte lysate: identification of nuclear inclusion proteins as products of tobacco etch virus RNA translation and cylindrical inclusion protein as a product of the potyvirus genome. Virology 104: 174-182.
Fernandez, A., Guo, H. S., Saenz, P., Simon-Buela, L., Gomez de Cedron, M., and Garcia, J. A. 1997. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic acid research 25: 4474-4480.
Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L. S., Lu, A. T., and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251:767-773.
Fodor, S. P. A. 1997. Massively parallel genomics. Science 277: 393-394.
Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. 1992. A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. Journal of general virology 73: 2183-2187.
Gabig, M., and Wegrzyn, G. 2001. An introduction to DNA chips: principles, technology, applications and analysis. Acta biochimica polonica 48(3): 615-622.
Guo, D., Rajamaki, M.-L., Saarma, M., and Valkonen, J. P. T. 2001.Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of general virology 82: 935-939.
Hames, B. D., and Higgins, S. J. 1985. Nucleic Acid Hybridization: a practical approach. Oxford, England: IRL Press.
Holmes, F. O. 1929. Local lesions in tobacco mosaic. Botanical gazette 87: 39-55.
Huang, Chin-hsing and Chang, Ya-Chun. 2001. Molecular characterization of a new potyvirus infecting Basella rubra L. and the expression of its coat protein in Escherichia coli. Plant Pathology Bulletin 10(4): 216-217.
Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R., Kobayashi, S., Davis, C., Dai, H., He, Y. D., Stephaniants, S. B., Cavet, G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R., Blanchard, A. P., Friend, S. H., and Linsley, P. S. 2001. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature biotechnology 19(4): 342-347.
Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D., and Madore, S. J. 2000. Assessment of the sensitivity and specificity of oligonucleotide (50 mer) microarrays. Nucleic Acids Research 28(22): 4552-4557.
Kasschau, K. D., and Carrington, J. C. 1998. A counter defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461-470.
Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G., and Shaw, J. G. 1994. Mutational analysis of the tobacco vein mottling virus genome. Virology 204: 759-769.
Ku, W.-C., Lau, W. K., Tseng, Y.-T., Tzeng, C.-M., and Chiu, S.-K. 2004. Dextran sulfate provides a quantitative and quick microarray hybridization reaction. Biochemical and biophysical research communication 315: 30-37.
Lapa, S., Mikheev, M., Shchelkunov, S., Mikhailovich, V., Sobolev, A., Blinov, V., Babkin, I., Guskov, A., Sokunova, E., Zasedatelev, A., Sandakhchiev, L., and Mirzabekov A. 2002. Species-Level Identificatio0n of Orthopoxviruses with an Oligonucleotide Microchip. Journal of clinical microbiology 40(3): 753-757.
Lee, G. P., Min, B. E., Kim, C. S., Choi, S. H., Harn, C. H., Kim, S. U., and Ryu, K. H. 2003. Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses. Journal of virological methods 110:19-24.
Li, X. H., Valdez, P., Olvera, R. E., and Carrington, J. C. 1997. Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). Journal of virology 71: 1598-1607.
Marshall, A., and Hodgson, J. 1998. DNA chips: An array of possibilities. Nature biotechnology 16: 27-31.
Mikhailovich, V., Lepa, S., Gryadunov, D., Sobolev, A., Strizhkov, B., Chernyh, N., Skotnikova, O., Irtuganova, O., Moroz, A., Litvinov, V., Vladimirskii, M., Perelman, M., Chernousova, L., Erokhin, V., Zasedatelev, A., and Mirzabekov, A. 2001. Identification of Rifampin-Resistant Mycobacterium tuberculosis Strains by Hybridization, PCR, and Ligase Detection Reaction on Oligonucleotide Microchips. Journal of clinical microbiology 39(7): 2531-2540.
Nikiforov, T. T., and Rogers, Y. H. 1995. The use of 96-well polystyrene plates for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization. Analytical biochemistry 227:201-209.
Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., Fodor, S. P. A. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proceedings of the National Academy of Sciences of the United States of America 91: 5022-5026.
Proudnikov, D., Timofeev, E., and Mirzabekov, A. 1998. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide Microchips. Analytical biochemistry 259: 34-41.
Rasmussen, S. R., Larsen, M. R., Rasmussen, S. E. 1991. Covalent immobilization of DNA onto polystyrene microwells: the molecules are only bound at the 5’ end. Analytical biochemistry 198: 138-142.
Restrepo-Hartwig, M. A., and Carrington, J. C. 1992. Regulation of nuclear transport of a plant potyvirus protein by autoproteolysis. Journal of virology 66: 5662-5666.
Riechmann, J. L., Lain, S., and Garcia, J. A. 1992. Highlights and prospects of potyvirus molecular biology. Journal of general virology 73: 1-16.
Riechmann, J. L., Cervera, M. T., and Garcia, J. A. 1995. Processing of the plum pox virus polyprotein at the P3-6K1 junction is not required for viability. Journal of general virology 76: 951-956.
Rojas, M. R., Murillo Zerbini, F. M., Allison, R. F., Gilbertson, R. L., and Lucas, W. J. 1997. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237: 283-295.
Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J.-B., Riechmann, J. L., and Garcia, J. A. 2000. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of general virology 81: 557-566.
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G. T., Erlich, H. A., Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350-1354.
Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proceedings of the National Academy of Sciences of the United States of America 86: 6230-6234.
Schaad, M. C., Jensen, P. E., and Carrington, J. C. 1997a. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. European Molecular Biology Organization journal 16: 4049-4059.
Schaad, M. C., Lellis, A. D., and Carrington, J. C. 1997b. VPg of tobacco etch potyvirus is a host genotype-specific determinant for long distance movement. Journal of virology 71: 8624-8631.
Schena, M., Heller, R.A., Theriault, T. P., Konrad, K., Lachenmeier, E., and Davis, R. W. 1998. Microarrays: biotechnology''s discovery platform for functional genomics. Trends in Biotechnology 16: 301-306.
Shukla, D. D., and Ward, C. W. 1988. Amino acid sequence homology of coat proteins as a basis for identification and classification of the potyvirus group. Journal of general virology 69: 2703-2710.
Sonoda, S., Koiwa, H., Kanda, K., Kato, H., Shimono, M., and Nishiguchi, M. 2000. The helper component-proteinase of sweet potato feathery mottle virus facilitates systemic spread of potato virus X in Ipomoea nil. Phytopathology 90: 944-950.
Soumounou, Y., and Laliberte, J.-F. 1994. Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. Journal of general virology 75: 2567-2573.
Urcuqui-Inchima, S., Haenni, A.-L., and Bernardi, F. 2001. Potyvirus proteins: a wealth of functions." Virus research 74: 157-175.
Verchot, J., Koonin, E. V., and Carrington, J. C. 1991. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus encoded proteinase. Virology 185: 527-535.
Verchot, J., and Carrington, J. C. 1995. Evidence that the potyvirus P1 proteinase Functions in trans as an accessory factor for genome amplification. Journal of Virology 69: 3668-3674.
Verchot, J., Herndon, K. L., and Carrington, J. C. 1992. Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190: 298-306.
Walsh, P. S., Levenson, C. H., and Erlich, H. A. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proceedings of the National Academy of Sciences of the United States of America 86: 6230-6234.
Widlak, P. 2004. DNA microarrays, a novel approach in studies of chromatin structure . Acta biochimica polonica 51(1): 1-8.
Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I., Parinov, S., Guschin, D., Drobishev, A., Dubiley, S. and Mirzabekov, A. 1996. DNA analysis and diagnostics on oligonucleotide microchips. Proceedings of the national academy of sciences of the United States of America 93: 4913-4918.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔