(3.227.0.150) 您好!臺灣時間:2021/05/08 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何承訓
研究生(外文):Cheng-Syun Ho
論文名稱:硝酸鹽轉運蛋白CHL1磷酸化受氮源調控之機制
論文名稱(外文):Regulation of nitrate transporter CHL1 phosphorylation by different nitrogen source
指導教授:蔡宜芳蔡宜芳引用關係
指導教授(外文):Yi-Fang Tsay
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:硝酸鹽轉運蛋白磷酸化
外文關鍵詞:CHL1phosphorylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了適應外在離子與營養物含量的不穩定,植物發展出高、低不同親和性的吸收系統。傳統認為這兩個系統是由不同基因所負責調控;但是最新研究發現,阿拉伯芥的硝酸鹽轉運蛋白CHL1是個具雙親和性的轉運蛋白,而且CHL1的雙親和性是由CHL1第101個蘇胺酸 (threonine) 是否磷酸化來調控;磷酸化的CHL1為高親和性的轉運蛋白,去磷酸化的CHL1為低親和性的轉運蛋白。但是目前對於CHL1的磷酸化與去磷酸化在植物生理的重要性卻還不清楚。本實驗利用多種分生與生化的方法觀察植物生長在不同硝酸鹽來源和不同濃度的環境下,在不同時間,植物對硝酸鹽吸收能力的變化、CHL1和其他負責吸收硝酸鹽轉運蛋白基因的表現情形,以及CHL1蛋白質的磷酸化的變化。並進一步比較野生株和chl1缺失株的高、低親和性硝酸鹽吸收能力,來瞭解CHL1在不同情況下對硝酸鹽吸收的貢獻。我們發現:1.) CHL1在高濃度硝酸鹽(12.5 mM)的吸收為最主要的轉運蛋白。CHL1負責的硝酸鹽吸收活性在高濃度硝酸鹽誘導是呈現一個先上升然後下降的表現情況;而在低濃度硝酸鹽(200μM)誘導下,野生株與chl1-5缺失突變株硝酸鹽吸收活性差異不明顯。2.) 在高濃度硝酸銨鹽下,CHL1蛋白是先上升然後下降的表現,且磷酸化強度是隨誘導的時間遞增而增加;但是在低濃度硝酸鹽下,CHL1蛋白與磷酸化表現情形正好與低硝酸鹽濃度表現情況相反。3.) 我們也觀察到外在不同硝酸鹽濃度,會對CHL1 RNA的表現有明顯的影響,但是對高親和性轉運蛋白NRT2:1的RNA表現則影響不大。4.) 在高濃度硝酸鹽(12.5 mM)誘導下CHL1蛋白與CHL1 RNA的表現一致,但在低濃度硝酸鹽(200μM)誘導下,CHL1蛋白與CHL1 RNA表現不一致,因此,我們推測CHL1在低濃度硝酸鹽(200μM)誘導中具有post-transcriptional regulation。5.) 在比較野生株和chl1-5缺失突變株的硝酸鹽吸收活性與其他負責吸收硝酸鹽轉運蛋白基因在不同硝酸鹽濃度的環境下表現,發現當CHL1缺失時,NRT2:1 RNA的表現與在野生株時的表現不同,推測當CHL1缺失時NRT2:1可能扮演互補CHL1功能的角色。
CHL1 is a dual-affinity nitrate transporter. Two functional modes of CHL1 are switched by phosphorylation and dephosphorylation at threonine residue 101: when phosphorylated, CHL1 function as a high-affinity nitrate transporter, whereas, when dephosphorylated, it functions as a low-affinity nitrate transporter. However, little is known about how CHL1 phosphorylation is regulated by the N-status of the plant, and what the physiological impacts of CHL1 phosphorylation are. To address these questions, nitrate uptake activity, CHL1 mRNA levels, CHL1 protein levels, as well as CHL1 phosphorylation levels were determined for plants exposed to high- or low- concentration of nitrate in the presence or absence of ammonium. When exposed to high concentration of nitrate, both CHL1 mRNA level, protein level as well as CHL1-mediated nitrate uptake activity showed transient increment followed by graduate decline. However, phosphorylation levels remain high 24 hour after exposing to high-concentration of nitrate. In contrast, when exposed to low-concentration of nitrate, CHL1 phosphorylation level showed transient increment then decline, but the protein levels remain high 24 hours after shift. These data indicated that phosphorylation level is high when the protein level is low. In addition, under certain condition, CHL1 protein level is not proportional to its mRNA level suggesting that CHL1is post-transcriptionally regulated in response to different nitrogen condition.
1.中文摘要………………………………………………………….1
2.英文摘要………………………………………………………….2
3.前言……………………………………………………………….3
4.材料與方法……………………………………………………….9
5.結果……………………………………………………………...26
6.討論……………………………………………………………...33
7.圖表………………………………………………........... 39
8.參考文獻………………………………………………………...66
參考文獻
Alison J., Karley Roger A., and Sanders, D. (2000). Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol. 122, 835-844.
Aslam, M., Rosichan, J.L., and Huffaker, R.C. (1992). Comparative kinetics and reciprocal inhibition of nitrate and nitrite in barley leaves. Plant Physiol. 83, 579-584.

Aslam, M., Travis, R.L., and Huffaker, R.C.(1992). Comparative kinetics and reciprocal infibition of nitrate and nitrate uptake in roots of uninduced and induced barley (Hordeum vulgar L.) seedings. Plant Physiol. 99, 1124-1133.

Amarasinghe, B.H.R.R., Bruxelles,G.L., Braddon ,M., Onyeocha, I., and Forde, B.G. (1998). Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta 206, 44-52.

Behl, R., Tichner, R., and Raschke, K. (1998). Induction of a high-capacity nitrate-uptake mechanism in barley roots prompted by nitrate uptake through a constitutive low-capacity mechanism. Planta 176, 235-240.
Braaksma, F.J, and Feenstra, W.J. (1973). Isolation and characterization of chlorate resistant mutant of Arabidopsis thaliana. Mutation Res. 19, 175-185.
Braaksma, F.J, and Feenstra, W.J. (1982). Isolation and characterization of ntrate reductase-deficient mutants of Arabidopsis thaliana. Theor. Appl. Genet. 64, 83-90.

Breteler, H. and Nissen P. (1982). Effect of exogeneous and endogeneous nitrate concentration on nitrate utilization by dwarf beans. Plant Physiol. 70, 754-759.
Brownlee, A.G., and Arst, H.N. Jr. (1983). Nitrate uptake in Aspergillus nidelans and involvement of the thied gene of the nitrate assimilation gene cluster. J. Bacteriol. 155, 1138-1146.

Crawford, N.M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell 7, 859-868.
Crawford, N. M., and Arst, H. N. (1993). The molecular genetics of nitrate assimilation in fungi and plants. Annu. Rev. Genet. 27, 115-146.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Delhon, P., Gojon, A., Tillard, P., and Passama, L. (1995). Diurnal regulation of NO3- uptake in soybean plants. I. Changes in NO3- influx, efflux, and N utilization in the plant during the day/night cycle. J. Exp. Bot. 46, 1585-1594.

Doddem, H., and Telkamp, G.P. (1971). Uptake of nitrate by mutants of Arabidopsis thaliana disturbed in uptake or reduction of nitrate. lI kinetics. Plant Physiol. 45, 332-338.

Dodema, H., Hofstra, J., and Feenstra, W. (1978). Effect of nitrogen source during growth on uptake of nitrate and cholarte. Plant Physiol. 43, 343-350.
Filleur, S., and Daniel-Vedele, F. (1999). Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana. Planta 207, 461-469.
Glass, A.D.M., J.E.Shaff, and Kochian; L.V. (1992). Studies of the uptake of nitrate in barley. Plant Physiol. 99, 456-463.

Hoff, T.N., Truong, and Cabonche, M.(1994). The use of mutation and transgenic plants to study nitrate assimilation. Plant Cell 17, 489-506.

Huang, N.C., Chiang, C.S., Crawford, N.M., and Tsay, Y.F. (1996). CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8, 2183-2191.
Huang, N.C., Liu, K.H., Lo, H.J. and Tsay, Y.F. (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11, 1381-1392.

King, B.J., Siddipi, M.Y., and Glass, A.D.M. (1992). Studies of uptake of nitrate in barley. V. Esimation of root cytoplasmic nitrate concentraction using nitrate reductase activity-implications for nitrate influx. Plant Physiol. 83, 389-483.

King, B.J., Siddipi, M.Y., and Glass; A.D.M. (1992). Estimation of root cytoplasmic nitrate concentration using nitrate reductase activity-implications for nitrate influx. Plant Physiol. 99, 1589.

Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropthic character of a protein. J. Mol. Biol. 157, 105-132.
Lauter, F.R., Ninnemann, O., Bucher, M., Riesmeier, J.W., and Frommer, W.B. (1996). Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. U. S. A. 93, 8139-8144.

Lin, C.M., Koh, S., Stacey, G., Yu, S.M., Lin, T.Y., and Tsay, Y.F. (2000). Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol. 122, 379-388.

Laurence J., Trueman, A.R., and Forde, B.G. (1996). Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175, 223-231.
Lejay, L., Tillard, P., Lepetit, M., Domingo Olive, F., Filleur, S., Daniel-Vedele, F., and Gojon, A. (1999). Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 18, 509-519.
Lejay, L., Quillere, I., Roux, Y., Tillard,P., Cliquet, J.B., Meyer, C., Morot-Gaudry, J.F., and Gojon, A. (1997). Abolition of posttranscriptional regulation of nitrate reductase partially prevents the decrease in leaf NO3- reduction when photosynthesis is inhibited by CO2 deprivation, but not in darkness. Plant Physiol. 115, 623-630.
Lee, R .B., and Drew, M.C. (1986a). Nitrogen-13 studies of nitrate fluxes in baraley roots. II. Effect of plant N-status on the kinetic parameters of nitrate influx. J. Exp. Bot. 37, 1768-1779.

Lee, R.B., and Drew, M.C. (1986b). Nitrogen-13 studies of nitrate flues in barely roots. I. Compartmental analysis from measurements of 13N efflux. J. Exp. Bot. 37, 1753-1767.

Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L., and Yanofsky, M.F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766-770.

Liu, K.H., Huang, C.Y., and Tsay, Y.F. (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865-874.
Liu, K.H. and Tsay, Y.F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013.
McClure, P.R., Kochian L.V., Spanswick R.M, and Shaff, T.E. (1990). Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on membrane potential. Plant Physiol. 93, 281-289.

Marks, M.D., West, J., and Weeks, D.P. (1987). The relatively large beta-tubulin gene family of Arabidopsis contains a membrane with an unusal transcribed 5'' noncoding sequence. Plant Mol. Biol. 10, 91-104.

Meharg, A.A., and Blat, M.R. (1995). NO transport across the plasma membrane of Arabidopsis thaliana root hair: Kinetic control by pH and membrane voltage. J. Memb. Biol. 145, 49-66.
Mertz, S.M., Jr., and Higinbotham, N. (1976). Transmembrane electropotential in barley roots as related to cell type, cell location, cutting and aging effects. Plant Physiol. 57, 123-128.

Prosser,S.J.G.A.B.A. (1993). Fast, automated analysis of nitrogen-15 nitrate from plant and soil extracts. Soil. Sci. Soc. Am. J. 57, 410-414.

Quesada, A., Krapp, A., Trueman, L.J., Daniel Vedele, F., Fernandze, E., Forde, B.G., and Caboche, M. (1997). PCR-identification of a Nicotiana plumb aginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol. Biol. 34, 265-274.
Rao, K.P., and Rains, D.W. (1976). Nitrate absorption by barley. I. kinetics and energetics. Plant Physiol. 57, 55-58.
Song, W., Steiner, H.Y., Zhang, L., Naider, F., Stacy, G., and Becker, J.M. (1996). Cloning of a second Arabidopsis peptide transport gene. Plant Physiol. 110, 171-178.

Tomsett, A.B., and Cove, D.J. (1979). Deletion mapping of the niiA niaD gene region of Aspergillus nidulans fungi. Genet. Res. 34, 19-32.
Tsay, Y.F., Frank, M.J., Page, T., Dean, C., and Crawford, N.M. (1993). Idenfication of mobile endogeneous transposon in Arabidopsis thaliana. Cell 260, 342-344.
Unkles, SE., Hawker, K.L., Grieve, C., Campbell, E.I., Montague, P., and Kinghorn, J.R. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. U. S .A. 88, 204-208.
Ullrich, W.R., and Novacky, A. (1981). Nitrate-dependent membrane potential changes and their induction in Lemna gibba G1. Plant Sci. Lett. 22, 221-217.
Van and Honert, T.H., and Hooymans, J.J.M. (1995). On the absorption of nitrate by maize in water culture. Acta. Bot. Neerl. 4, 376-384.
Vidmar, J.J., Zhuo, D., Siddiqi, M.Y., and Glass, A.D.M. (2000). Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol. 122, 783-792.

Wang, R., Liu,D., and Crawford, N.M. (1998). The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc. Natl. Acad. Sci. U. S .A. 95, 15134-15139.
Wieneke, J. (1992). Nitrate fluxes in squash seedings measured with 13N. J. Plant Nutriti. 15, 99-124.
Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, K.S., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Michael, M., Neff, Thuy Nguyen, J., Sato, S., Wang, Z.Y., Xia,Y., Dixon, A., Harrison, M.J., Lamb,C.J., Yanofsky, M.F., and Chory, J. (2000). Activation tagging in Arabidopsis. Plant Physiol. 122, 1003-1014.

Williams, L.E. and Miller A.J. (2001). Transporters responsible for the uptake and paritioning of nitrogenous solutes. Annu. Rev. Plant. Mol. Biol. 52, 659-688.
Zhen, R-G., Koyro, H.-W., Tomos, R.A., and Miller A.J. (1991). Compartmental nitrate concentractions in barley root cells measured with nitrate-selective microelectrode and by single-cell sap sampling. Planta 185, 356-361.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔