(3.236.222.124) 您好!臺灣時間:2021/05/19 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝恩蓉
研究生(外文):En-Jung Hsieh
論文名稱:研究蕃茄可能的轉錄因子cLEX4I22的特性
論文名稱(外文):Characterization of a putative tomato transcription factor, cLEX4I22
指導教授:楊寧蓀
指導教授(外文):Ning-Sun Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:58
中文關鍵詞:轉錄因子
外文關鍵詞:transcription factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物在遇到環境改變時會有不同的反應以抵抗逆境。為了找出植物在逆境下能有反應的基因群,我們由蕃茄的互補DNA微陣列 (cDNA microarray) 分析中找出了一系列植物在逆境下確實有所反應之基因。我們將研究焦點放在缺水、高鹽及低溫三種逆境下可以高度表現之基因。在這三種逆境下有反應之基因群中,我們發現其中一個基因,命名為cLEX4I22,是有C2H2之鋅指蛋白(Cys2/His2 zinc finger protein)之結構。又因該基因為一個可能的轉錄因子(putative transcription factor),所以就選擇此基因做更進一步的研究。在動物的系統中,C2H2鋅指蛋白基因家族是最大的調節蛋白(regulatory protein)家族,且多在動物生長發育中扮演重要的角色。因此我們推理在植物中之鋅指蛋白轉錄因子在植物生長發育上也可能扮演重要的角色。此論文研究的目的即為研究蕃茄cLEX4I22之功能。在南方墨點分析(Southern blot analysis)實驗中發現在蕃茄的基因組中cLEX4I22顯然像是為一個單一基因;北方墨點分析知道cLEX4I22基因在蕃茄花部的表現程度比較高。接著,我們利用基因轉殖的方法我進一步研究了cLEX4I22的功能,分別以持續表現之啟動子(constitutive promoter) CaMV 35S及一個在逆境下可被誘導表現之阿拉伯芥啟動子cor15a來啟動cLEX4I22基因之表現。接著藉由農桿菌轉殖系統(Agrobacterium-mediated transformation)將這個基因轉入模式植物阿拉伯芥。目前得到了數個可能過度表現cLEX4I22成功之阿拉伯芥之轉殖株。我們發現大部分的轉殖植物具有極不正常之外表型,並由此推測cLEX4I22基因可能在逆境誘導下會影響植物之生長發育,或也可能與植物之節省能量機制有關。
Plants are known to respond well and adapt to various environmental stresses. To identify the plant stress-responsive genes, we have obtained a large number of tomato cDNA clones that responsed to various environmental stresses, by using our homemade cDNA microarray systems. It was interesting to observe that some genes were highly expressed as a response to water deficit, salinity and low temperature stresses. One putative transcription factor, cLEX4I22, apparently belongs to a C2H2 zinc finger protein group, was chosen for this study. In animal systems, the C2H2 zinc finger protein gene family is known as the largest group of regulatory proteins and plays similar roles an important role in growth and development of a number of tested systems. It is thus hypothesized that cLEX4I22 and its homologues transcription factors may also play similar roles in plants. My study goal is to characterize this novel putative transcription factor of tomato, cLEX4I22, for functional analysis and potential application to crop plant development. Southern blot analysis showed that the endogenous cLEX4I22 apparently exist as a single copy gene in the tomato genome; Northern blot analysis of different organs revealed that the cLEX4I22 gene was expressed higher in tomato flowers then other tested organs. In addition, transgenic approach was used for functional study. We have obtained a full length cLEX4I22 cDNA, and cloned the open reading frame of cLEX4I22 into a pCAMBIA1390 binary vector, driven by a constitutive promoter CaMV35S or an Arabidopsis stress-inducible promoter cor15a. Using Agrobacterium-mediated transformation, we have obtained several putative Arabidopsis transgenic lines overexpressing cLEX4I22, which exhibited abnormal phenotypes. These results suggest that cLEX4I22 might play a role in plant growth and development.
Index

Abbreviation……………………………..…………………………....…….…….……i
English abstract…………………………………..……………………..…….………iii
Chinese abstract……………………………………………...………..…..….………iv

Introduction.……………………………………………...…………..…….………1
The Cys2/His2-type zinc finger proteins……………………..………….….…….……2
The Cys2/His2-type zinc finger proteins in human……………………….…………....3
The Cys2/His2-type zinc finger proteins in plants……………….…………..…….......3
C2H2 zinc finger proteins in Arabidopsis…………………….….…………….............4
C2H2 zinc finger proteins in petunia………………….………….…………….............6
Objectives…………………………………………………………………….………..7

Materials and Methods………………………….……………………….………8
Plant materials……………….……………………………..…..…………..….………8
Stress conditions……………….………………………………..…..…………………8
Molecular Biology Analyses…………………………………….…..………...………8
Extraction of tomato DNA……………………………………..…..………….…..8
Extraction of Arabidopsis DNA………..………..………………………....……...8
Southern blot analysis…..………………………….……….................................10
Transfer of DNA or RNA from agarose gel to solid supports................................10
Northern blot analysis………………….………....................................................11
Isolation of total RNA……………….……….................................................11
RNA electrophoresis……………….………....................................................11
Preparation of probe…………….………..............................................................11
Hybridization…………….……….........................................................................12
Washing membrane.…………...............................................................................12
Stripping membrane…...........................................................................................14
Molecular cloning of cLEX4I22 gene..........................................................................14
RACE (Rapid Amplification of cDNA Ends) .......................................................14
Preparation of Agrobacterium-mediated transformation of Arabidopsis.....................15
Plasmid ..................................................................................................................15
constructs................................................................................................................15
Electroporation of E.coli........................................................................................15
Preparation of XL1-Blue competent cells..............................................................15
Transformation of E.coli........................................................................................16
Alkaline lysis of plasmid minipreparation.............................................................16
Electroporation of Agrobacterium.........................................................................16
Preparation of electro-competent Agrobacterium..........................................16
Transformation of Agrobacterium..................................................................17
Transformation of Arabidopsis......................................................................17
Plant growth conditions.................................................................................17
Agrobacterium-mediated dip transformation of Arabidopsis........................17
Hygromycin resistance test............................................................................18

Results…………………………………………………………………...…………19
Northern blot analysis of cLEX4I22 expression…………………………………...…19
Molecular cloning of the full length cLEX4I22 gene……………………………...…20
Multiple amino acid sequence alignments………………………………………...…21
Southern blot analysis of cLEX4I22 sequence in tomato genome….……………..…22
Analysis of possible organ-preference gene expression…………………………...…22
Cloning of the cLEX4I22 open reading frame for studies using transgenic approach.23
Transgenic Arabidopsis plants expressing cLEX4I22 ……………………….………24
Phenotype comparison……………………………………………………….………25

Discussion…………………………………………………………………………26
References …………………………………………………………..……………33















Index of Tables

Table 1. TFⅢA-type zinc finger protein in petunia………………………..……...…39
Table 2. Comparison of the peptide sequence identity between
similar genes in different species and cLEX4I22.………………..…………40
Table 3. Frequency for transforming Arabidopsis with cLEX4I22
cDNA or related genes, via hygromycin selection.……..……………..……41














Index of Figures

Figure 1. Schematic diagram of a zinc finger………………………..……...……….42
Figure 2. Zinc finger motif..………………………………………...…………….….43
Figure 3. TFⅢA-type zinc finger consensus sequence. ……………….……….……44
Figure 4. Schematic representations of protein structure..…………………...………45
Figure 5. Northern blot analysis of cLEX4I22 gene in leaf and root tissue
of wild type tomato plants.…………………………………...……………46
Figure 6. Rapid amplification cDNA end of Tomato cLEX4I22 cDNA………..……47
Figure 7. Full length cLEX4I22 cDNA nucleotide sequence…………….………..…48
Figure 8. Characteristic amino acid sequences of cLEX4I22.…………………...…..49
Figure 9. Comparison of cLEX4I22 amino acid sequence and related gene
products from different species……………………………………………50
Figure 10. Southern blot analysis of cLEX4I22 gene in wild type
tomato plants (Ⅰ)……………………………………………………….…51
Figure 11. Southern blot analysis of cLEX4I22 gene in wild type tomato
plants (Ⅱ).…………………………………………………………………52
Figure 12. Northern blot analysis cLEX4I22 gene expression in different
organs of wild type tomato plants.……………………………………..….53
Figure 13. PCR cloning of open reading frame from cLEX4I22 cDNA…………..…54
Figure 14. Confirmation of cloning of the cLEX4I22 open reading frame.…………55
Figure 15. Molecular construction of pCAMBIA1390-35S-cLEX4I22………..…….56
Figure 16. Molecular construction of pCAMBIA1390-cor15a-cLEX4I22.………….57
Figure 17. Phenotypes of putative transgenic plants……………….…………...……58
References

Boter, M., Ruiz-Rivero, O., Abdeen, A. and Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18, 1577-1591.
Chen, C.H. and Chen, Z.X. (2002). Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 129, 706-716.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043-1054.
Dehal, P., Predki, P., Olsen, A.S., Kobayashi, A., Folta, P., Lucas, S., Land, M., Terry, A., Zhou, C.L.E. and Rash, S. (2001). Human chromosome 19 and related regions in Mouse: conservative and lineage-specific evolution. Science 293, 104–111.
Dinkins, R., Pflipsen, C., Thompson, A. and Collins G.B. (2002). Ectopic expression of an Arabidopsis single zinc finger gene in tobacco results in dwarf plants. Plant Cell Physiol. 43, 743-750.
Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F. and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130, 639-648.
Hsieh, T.H., Lee, J.T., Charng, Y.Y. and Chan, M.T. (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618-626.
Iida, A., Kazuoka, T., Torikai, S., Kikuchi, H. and Oeda, K. (2000). A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J. 24, 191-203.
Kapoor, S., Kobayashi, A. and Takatsuji, H. (2002). Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14, 2353-2367.
Kim, J.C., Lee, S. H. and Cheong, Y. H. (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247-259.
Kobayashi, A., Sakamoto, A., Kubo, K., Rybka, Z., Kanno, Y. and Takatsuji, H. (1998). Seven zinc-finger transcription factor are expressed sequentially during the development of anthers in petunia. Plant J. 13, 571-576.
van der Krol, A.R., van Poecke, R.M., Vorst, O.F., Voogt, C., van Leeuwen, W., Borst-Vrensen, T. W., Takatsuji, H. and van der Plas, L. H. (1999). Developmental and wound-, cold-, desiccation-, ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene, ZPT2-2. Plant Physiol. 121, 1153-1162.
Kubo, K., Sakamoto, A., Kobayashi, A., Rybka, Z., Kanno, Y., Nakagawa, H., Nishino, T. and Takatsuji, H. (1998). Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucl. Acids Res. 26, 608-615.
Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B. and Zhu, J.K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J. 21, 2692-2702.
Lin, C. and Tomashow, M.F. (1992). DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol. 99, 519-525.
Lippuner, V., Cyert, M.S. and Gasser, C.S. (1996). Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J. Biol. Chem. 271, 12859-12866.
Luscombe, N.M., Austin, S.E., Berman H.M. and Thornton J.M. (2000). An overview of the structures of protein-DNA complexes. Genome Biol. http://genomebiology.com/2000/1/1/reviews/001/
Meissner, R. and Michael, A.J. (1997). Isolation and characterization of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Mol. Biol. 33, 615-624.
Meng, S.W., Zhang, Z. and Li, J. (2004). Twelve C2H2 zinc-finger genes on human chromosome 19 can be each translated into the same type of protein after frameshifts. Bioinformatics 20, 1-4.
Michale, A.J., Hofer, J.M.I. and Ellis, T.H.N. (1996). Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30, 1051-1058.
Mukhopadhyay, A., Vij, S. and Tyagi, A.K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci USA 101, 6309-6314.
Nakagawa, H., Ferrario, S., Angenent, G.C., Kobayashi, A. and Takatsuji, H. (2004). The Petunia Ortholog of Arabidopsis SUPERMAN Plays a Distinct Role in Floral Organ Morphogenesis. Plant Cell 16, 920–932.
Ratcliffe, O.J., Riechmann, J.L. (2002). Arabidopsis transcription factors and the regulation of flowering time: a genomic perspective. Curr Issues Mol Biol. 4, 77-91.
Riechmann, J.L. and Ratcliffe, O.J. (2000). A genomic perspective on plant transcription factors. Curr. Opin. Plant Biol. 3, 423-434.
Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110.
Sakai, H., Medrano, L.J. and Meyerowitz, E.M. (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199-203.
Sakamoto, A., Minami, M., Huh, G.H. and Iwabuchi, M. (1993). The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur. J. Biochem. 217, 1049-1056.
Shannon, M. and Stubbs, L. (1998). Analysis of homologous XRCC1-linked zinc-finger gene families in human and mouse: evidence for orthologous genes. Genomics 49, 112–121.
Tague, B.W. and Goodman, H.M. (1995). Characterization of a family of Arabidopsis zinc finger protein cDNAs. Plant Mol. Biol. 32, 785-796.
Tague, B.W. Gallant, P. and Goodman, H.M. (1997). Expression analysis of an Arabidopsis C2H2 zinc finger protein gene. Plant Mol. Biol. 28, 267-279.
Takatsuji, H., Mori, M., Benfey, P.N., Ren, L. and Cua, N.H. (1992). Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J. 11, 241-249.
Takatsuji, H., Nakamura, N. and Katsumoto, Y. (1994). A new family of zinc finger proteins in Petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6, 947–958.
Takatsuji, H. (1996). A single amino acid determines the specificity for the target sequence of two zinc-finger proteins in plants. Biochem. Biophys. Res. Commun. 224, 219–223.
Takatsuji, H. and Matsumoto, T. (1996). Target-sequence recognition by separate-type Cys2 /His2 zinc finger proteins in plants. J. Biol. Chem. 271, 23368–23373.
Takatsuji, H. (1998). Zinc-finger transcription factors in plants. Cell Mol. Life Sci. 54, 582–596.
Takatsuji, H. (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol. Bio. 39, 1073-1078.
Sakamoto, H., Araki, T., Meshi, T. and Iwabuchi, M. (2000). Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248, 23-32.
Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J. and Tomashow, M.F. (1998). Mode of actionof the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95, 14570-14575.
Sugano, S., Kaminaka, H., Rybka, Z., Catala R., Salinas J., Matsui, K, Ohme-Takagi, M. and Takatsuji, H. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 36, 830-841.
Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., and Holt, R.A. (2001). The sequence of the human genome. Science 291, 1304–1351.
Villalobos, M.A., Bartels, D. and Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol. 135, 309-324.
Yashioka, K., Fukushima, S., Yamazaki, T., Yoshida, M. and Takatsuji, H. (2001). The plant zinc finger protein ZPT2-2 has a unique mode of DAN interaction. J. Biol. Chem. 276, 35802-35807.
Zhang, J.Z. (2003). Overexpression analysis of plant transcription factors. Curr. Opin. Plant Biol. 6, 430-440.
Zhou, C., Labbe, H., Sridha, S., Wang, L., Tian, L., Latoszek-Green, M., Yang, Z., Brown, D., Miki, B. and Wu, K. (2004). Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J. 38, 715-724.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top