(3.80.6.131) 您好!臺灣時間:2021/05/17 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林書妍
研究生(外文):Shu-Yen Lin
論文名稱:銅鑼地區野生柑橘的形態特徵與RAPD分子標誌鑑定
論文名稱(外文):Identification of wild citrus from Tongluo using morphological characteristics and RAPD markers
指導教授:陳右人陳右人引用關係
指導教授(外文):Iou-Zen Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:88
中文關鍵詞:柑橘形態特徵逢機增殖多型性DNA
外文關鍵詞:citrusmorphological characteristicsRAPD
相關次數:
  • 被引用被引用:5
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
南庄橙(Citrus taiwanica Tan. & Shim.)為原生台灣的芸香科(Rutaceae)柑橘屬(Citrus)植物,相關研究甚少;由於野生族群遽減,已列入世界瀕危稀有植物,基於保持基因種源的多樣性與開發原生種的利用潛力,因此進行南庄橙的保存與研究。野生柑橘族群發現於1999年苗栗縣銅鑼鎮樟樹林地區,至2003年12月止,共發現13棵植株,分別編號並以衛星導航系統(GPS)定位記錄。將野生柑橘族群進行初步鑑定,於比對已知文獻及蠟葉標本後,認為此野生族群有可能為南庄橙。本研究由形態與DNA層次的分析為依據,推論與論證尋獲之野生柑橘族群的最可能「種」。
形態特徵選用台灣目前常見之柑橘栽培品種,以及與南庄橙血緣相近的種進行調查,包括:南庄橙、酸橙、柳橙、‘麻豆文旦’柚、‘Duncan’葡萄柚、椪柑、桶柑,均來自嘉義農業試驗分所之柑橘種原保存區。調查性狀葉的部分包含葉形、葉緣、質地、本葉長、本葉寬、翼葉長、翼葉寬,並計算其長寬比;花的部分為花色、花瓣數、花絲數目、花瓣長、花柱長、花絲長、花絲基部黏合程度;果實的部分有果皮色、果皮光滑程度、果皮果肉分離程度、果肉色、果高、果實直徑;種子的部分是種子形狀、合點顏色、胚色及胚的數目。根據以上性狀特徵,野生柑橘族群中僅1號株有多處不同於其他個體,且性狀與蠟葉標本及文獻記載都不符合,因此將之排除為南庄橙疑似種之外。其餘11株疑似株,族群內無顯著差異,為單一族群;進一步與其他柑橘種類比較,性狀表現不同於台灣現有的主要柑橘種類,與嘉義分所保存之南庄橙種原則有多處相似,為南庄橙的可能性極高。群集分析及主成分分析的結果,擬似種單株間性狀最接近,而與嘉義分所南庄橙及酸橙相似性最高,具有較近的親緣關係,但三者間可確實區分。
RAPD分析選用分類系統中重要的柑橘種類代表,包含形態特徵所有材料,並加入‘Tahiti’萊姆及佛手柑。使用51個引子進行PCR反應,共記錄277條清晰條帶。疑似種族群內,多型性主要發生在1號株與其他11株有不同產物,且1號株與‘麻豆文旦’柚有共同的專一性條帶。10個已知種與12株野生柑橘個體之聚類樹狀圖及主成分分析的結果,符合Swingle及Tanaka分類系統的分類群。1號株與‘麻豆文旦’柚親緣關係最近,與橙類或嘉義分所南庄橙的相似距離遠,親緣關係低於50%。其餘疑似株集中於橙類群,嘉義分所南庄橙與酸橙之間的遺傳相似度約60%,疑似株族群與酸橙的相似度為90%,其bootstrap值顯示兩者能確實分群。疑似株族群間遺傳基質的同質性高,其中最接近嘉義分所南庄橙為12號、13號及11號。
由形態特徵與分子標誌分析之結果,銅鑼鄉樟樹林地區之野生柑橘族群與酸橙及嘉義分所保存之南庄橙間具有極親密地親緣關係,其中又以酸橙的關係較為相近。憑藉形態特徵之翼葉寬度及大小及RAPD分析結果,可確實將酸橙與此野生柑橘族群區別,綜合地緣、本地歷史的相關因素後,判定此野生柑橘族群最可能為南庄橙或酸橙於台灣本島的新變種。
Citrus taiwanica Tan. & Shim., of which relevant researches are few, is one of the endemic Citrus in Taiwan. It is also the world endangered plant because of the severely scarce population. On the basis of keeping genetic diversity and developing the potential in endemic plant, we carry on the conservation and studied of C. taiwanica. Thirteen suspected individuals of C. taiwanica were found at the Chang-Shu-Lin region, in Tongluo township, Miaoli county in 1999. After numbering respectively and orienting each position with the global positioning satellite (GPS), 13 suspected individuals of C. taiwanica were compared with the specimen (in TAI) and description in related references. We supposed the wild population might be C. taiwanica. This study was based on the morphological characteristics and DNA level analysis with RAPD.
Species which have close relationship to C. taiwanica, or which are universal cultivated in Taiwan were used in morphological investigation, including C. taiwanica, C. aurantium L., C. sinensis (L.) Osbeck, C. grandis (L.) Osbeck, C. paradisi Macf., C. reticulate Blanco, and C. tankan Hayata. All of them were planted in Citrus germplasm of Chiayi Agriculture Experiment Station (CAES). Investigational items are leaf shape, leaf margin, leaf texture, length of leaf, width of leaf, length of wing, width of wing, color of flower, petal number, filament number, length of petal, length of filament, length of stylus, coherence of filament, color of fruit rind, skin of fruit, coherence of rind, color of pulp, height of fruit, cross section diameter, seed shape, color of chalaza, color of embryo, and number of embryo. The results revealed suspected individual No.1 is different from others, so it is excluded the suspects of C. taiwanica. The rest of the suspects are very similar intra-population, and are different from all major cultivated species in Taiwan. They are the most related to C. aurantium and C. taiwanica from CEAS, whether these three were certainly separated. The same results are suggested in clustering analysis and principle component analysis.
Species using in RAPD analysis include the three basic species (C. medica L., C. grandis, and C. reticulata). Besides samples in morphological investigation, C. aurantifolia Swingle and C. medica were added. Fifty-one primers produced 277 polymorphic bands. Among the suspected individuals, polymorphism was revealed on No.1, as well as several specific bands of no.1 were shared with C. grandis. Grouping resulted from dendrogram and principle coordinate analysis matches taxonomic definition both in Swingle system and Tanaka system. The suspected clone No. 1 was more similar with C. grandis, but away from orange-group or C. taiwanica from CAES. The genetic similarity distance was lower than 50%. The rest of the suspected clones, clustered in orange-group, were 90% similar with C. aurantium, but they indeed spilt into two groups with bootstrap value 100. C. taiwanica from CAES was 60% similar with C. aurantium. The suspects had narrow genetic base. The suspects of No.12, No. 13, and No.11 were the most similar with C. taiwanica.
Both the results in morphological investigation and DNA markers showed the suspects of C. taiwanica in Tongluo township were very related to C. aurantium and C. taiwanica from CAES, especially to C. aurantium. As a result of clear differences on width and size of wings between the suspected clones and C. aurantium, combining geographical distribution and local history, we suggested the suspects should be C. taiwanica or a new variety of C. aurantium.
摘要……………………………………………………………… 1
前言……………………………………………………………… 3
前人研究………………………………………………………… 5
台灣的原生柑橘……………………………………………… 5
南庄橙的發現與分佈………………………………………… 7
柑橘類的分類概況……………………………………………… 8
南庄橙的分類地位…………………………………………… 11
南庄橙的相關研究……………………………………………… 12
柑橘類形態鑑定之主要依據………………………………… 13
五種DNA分子標誌的簡介……………………………………. 14
DNA分子標誌於柑橘分類之應用……………………………. 16
材料與方法……………………………………………………… 20
植物材料……………………………………………………… 20
疑似種形態特徵調查與鑑定………………………………… 21
疑似種RAPD分析與鑑定……………………………………… 22
結果……………………………………………………………… 27
南庄橙疑似種的發現與現地狀態…………………………… 27
南庄橙的形態特徵及疑似種的形態鑑定…………………… 27
南庄橙的RAPD分子特徵及疑似種的分子鑑定……………… 36
討論……………………………………………………………… 63
疑似種與其他柑橘種類的性狀比較………………………… 63
南庄橙及疑似種的性狀特徵………………………………… 64
分子標誌的特徵……………………………………………… 66
以形態與分子證據解釋南庄橙的分類地位………………… 68
野生族群的多樣性……………………………………………… 70
結論……………………………………………………………… 71
參考文獻………………………………………………………… 72
Abstract………………………………………………………… 79
附錄一…………………………………………………………… 81
附錄二…………………………………………………………… 83
附錄三…………………………………………………………… 84

表1. 形態特徵調查及RAPD分析使用之植物材料……………… 26
表2. 南庄橙疑似種植株GPS定位資料………………………….. 40
表3. 南庄橙疑似種族群於不同季節間之葉性狀比較………… 41
表4. 南庄橙疑似種與其他柑橘種類的葉性狀比較…………… 42
表5. 南庄橙疑似種與其他柑橘種類的花性狀比較…………… 43
表6. 南庄橙疑似種果實相關性狀調查表……………………… 44
表7. 南庄橙疑似種與其他柑橘種類主成分之特徵分析結果… 49
表8. 南庄橙疑似種與南庄橙主成分之特徵分析結果………… 52
表9. RAPD分析使用逢機引子及多型性條帶分佈資料………… 55

圖1. 調查地銅鑼山區樟樹林地區之航測圖…………………… 39
圖2. 南庄橙疑似種之果實性狀………………………………… 45
圖3. 南庄橙疑似種之種子性狀及刺…………………………… 46
圖4. 南庄橙疑似種之葉性狀…………………………………… 47
圖5. 南庄橙疑似種之花性狀…………………………………… 48
圖6. 南庄橙疑似種及不同柑橘種類分類性狀之聚類樹狀圖… 50
圖7. 南庄橙疑似種及不同柑橘種類分類性狀之主成分分析平面圖51
圖8. 南庄橙疑似種分類性狀之聚類樹狀圖…………………… 53
圖9. 南庄橙疑似種分類性狀之主成分分析平面圖…………… 54
圖10. RAPD多型性分析圖譜 (I)………………………………… 57
圖11. RAPD多型性分析圖譜 (II)……………………………… 58
圖12. 南庄橙疑似種與其他柑橘類之UPGMA聚類樹狀圖……… 59
圖13. 南庄橙疑似種與其他柑橘類之Consensus UPGMA聚類樹狀圖60
圖14. 南庄橙疑似種與其他柑橘類之Consensus NJ聚類樹狀圖…61
圖15. 南庄橙疑似種與其他柑橘類之主成分分析平面圖……… 62
1.方德秋、章文才、肖順元. 1993. 應用同功酶進行柑橘分類和進化研究. 植物分類學報 31: 329-352.
2.何天富 編. 1999. 柑橘遺傳資源. p.16-40. 柑橘學, 中國農業出版社, 北京.
3.何東輯. 1995. 台灣產芸香科植物分類之研究. 中興大學森林所碩士論文.
4.沈德緒、王元裕、陳力耕. 1998. 柑橘遺傳育種學. 科學出版社, 北京. p.1-48, 88-94.
5.林正奎、華映芳. 1992. 柑橘屬11個類群葉精油成分與系統進化關係. 植物學報34: 133-139.
6.胡昌熾. 1960. 柑橘屬. P.120-141. 園藝植物分類學. 台北.
7.徐國士. 1987. 台灣的稀有植物. 刊於:周昌弘、彭鏡毅、趙淑妙(編), 臺灣植物資源與保育. 中華民國自然生態保育協會, 台北.
8.翁儷倩. 2001. 桶柑遺傳歧異性之分析. 台灣大學園藝所碩士論文.
9.張太平、彭少麟、王淨峰、凌定厚、甘廉生. 2001. 柚類品種遺傳相互關係的RAPD標記研究. 熱帶亞熱帶植物學報9:322-328.
10.諶克終. 1969. 柑橘栽培學. 正中書局發行. 台北. p.19-27.
11.賴明洲. 1991. 台灣地區植物紅皮書--稀有及瀕危槙物種類之認定與保護等級之評定. 台北市行政院農業委員會, 台北.
12.黎裕、賈繼增、王天宇. 1999. 分子標記的種類及其發展. 生物技術通報 4:19-22.
13.鍾廣炎、葉蔭民. 1993. 柑橘植物的數值分類學研究. 植物分類學報 31:252-260.
14.劉業經、呂福原、歐辰雄. 1988. 臺灣樹木誌. 國立中興大學農學院, 台中. p.553.
15.劉棠瑞. 1993. 台灣木本植物圖誌(卷下). 國立台灣大學農學院, 台北. p.860, 866.
16.劉和義、楊遠波、呂勝由、施炳霖. 2000. 芸香科. p.136-137. In: 臺灣維管束植物簡誌 第三卷. 行政院農業委員會, 台北.
17.嚴新富. 1995. 重要園藝作物野生近緣種之研究. 臺灣大學園藝所博士論文.
18.嚴新富. 1996. 果樹種原特性調查. 刊於:果樹種原保育技術訓練專刊. 行政院農業委員會農業試驗所, 台中.
19.中村三八夫. 1936. 臺灣に於ける柑橘の一新種. 柑橘研究 7: 60.
20.田中長三郎. 1926. 日本領土の野生柑橘に就て. 學藝雜誌 2(1): 51-58.
21.田中長三郎. 1931. 臺灣に於けろタチバナの發見と其の學術的に產業的意義. 柑橘研究 5(1): 1-20.
22.櫻井芳次郎. 1928. 臺灣產柑橘類の概略記載. 柑橘研究 4: 32-49.
23.Ahmad, R., D. Struss, and S. M. Southwick. 2003. Development and characterization of microsatellite markers in Citrus. Journal of the American Society for Horticultural Science 128:584-590.
24.Ainsworth, C. 2000. Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany 86: 211-221.
25.Abkenar, A. A. and S. Isshiki. 2003. Molecular characterization and genetic diversity among Japanese acid citrus (Citrus spp.) based on RAPD markers. The Journal of Horticultural Science & Biotechnology 78:108-112.
26.Batchelor, L. D. and W. B. Singlair. 1960. World production of important commercial varieties. p. 1-24. In: Singlair, W. B.(eds.) The orange. University of California, Division of Agricultural Science, USA.
27.Barrett, H. C. and A. M. Rhodes. 1976. A numerical taxonomic study of affinity relationships in cultivated citrus and its closed relatives. Systematic Botany 1:105-136.
28.Bretó, M. P., C. Ruiz, J. A. Pina, and M. J. Asíns. 2001. The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Molecular Phylogenetics and Evolution 21:285-293.
29.Cameron, J. W. and R. K. Soost. 1969. Citrus. p.129-130. In: Ferwerda, F. P. and F. Wit (eds.). Outlines of perennial crop breeding in the tropics. Landbouwhogeschool Wageningen, Nertherlands.
30.Canel, C., J. N. Bailey-Serres, and M. L. Roose. 1995. In vitro [C14] citrate uptake by tonoplast vesicles of acidless citrus juice cell. Journal of the American Society for Horticultural Science 120: 510-514.
31.Coletta Filho, H. D., M. A. Machado, M. L. P. N. Targon, M. C. P. Q. D. G. Moreira, and J. Pompeu Jr. 1998. Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica 102:133-139.
32.Corrazza-Nunes, M. J., M. A. Machado, W. M. C. Nunes, M. Cristofani, and M. L. P. N. Targon. 2002. Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169-176.
33.Deng, X. X., C. G. Hu, H. Huo, W. W. Guo, and H. Yi. 1992. A preliminary study of citrus germplasm conservation and its evaluation by RAPD analysis. Proceeding of the First International Symposium On Citrus Biotechnology 99-105.
34.Deng, Z. N., A. Gentile, E. Nicolosi, F. Domina, A. Vardi and E. Tribulato. 1995. Identification of in vivo and in vitro lemon mutants by RAPD markers. The Journal of Horticultural Science 70: 117-125.
35.Davies, F. S. and L. G. Albrigo. 1994. History, distribution and uses of citrus fruit. In: Citrus p.1-11. CAB International, Wallingford, Oxon, UK.
36.Elisiário, P. J., E. M. Justo, and J. M. Leitão. 1999. Identification of mandarin hybrids by isozyme and RAPD analysis. Scientia Horticulturae 81: 287-299.
37.Fang. D. Q., C. T. Federici, and M. L. Roose. 1997. Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40: 841-849.
38.Fang. D. Q., R. R. Kruegar, and M. L. Roose. 1998. Phylogenetic Relationships among selected citrus germplasm accessions revealed by inter-simple sequence repeat) ISSR markers. Journal of the American Society for Horticultural Science 123: 612-617.
39.Fang, D. Q. and M. L. Roose.1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics 95: 408-417.
40.Fallahi, E., J. W. Moon, and D. R. Rodney. 1989. Yield and quality of ‘Redblush’ grapefruit on twelve rootstocks. Journal of the American Society for Horticultural Science 114: 187-190.
41.Fallahi, E. and Z. Mousavi. 1991. Performance of ‘Orlando’tangelo trees on ten rootstocks in Arizona. Journal of the American Society for Horticultural Science 116: 2-5.
42.Federici, C. T., D. Q. Fang, R. W. Scora, and M. L. Roose. 1998. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theoretical and Applied Genetics 96: 812-822.
43.Chang, C. E. and T. G. Hartley. 1993. Citrus. p. 513-517. In: Flora of Taiwan Editorial Committee, (eds.) Flora of Taiwan V.3. Epoch Pub. Co., Taipei, Taiwan.
44.Georgiou, A. 2000. Performance of ‘Nova’ mandarin on eleven rootstocks in Cyprus. Scientia Horticulturae 84:115-126.
45.Georgiou, A. 2002. Evaluation of rootstocks for ‘Clementine’ mandarins in Cyprus. Scientia Horticulturae 93:29-38.
46.Gogorcena, Y. and J. M. Ortiz. 1993. Use of multivariate analysis in the taxonomy of Citrus aurantium L. and relatives. Scientia Horticulturae 53: 301-310.
47.Gulsen, O. and M. L. Roose. 2001. Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticultural Science 126: 309-317.
48.Herrero, R., M. J. Asins, J. A. Pina, E. A. Carbonell, and L. Navarro. 1996. Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theoretical and Applied Genetics 93: 1327-1334.
49.Kalendar, R., T. Grob, M. Regina, A. Suoniemi, and A. Schulman. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98: 704-711.
50.Kawaii, S., Y. Tomono, E. Katase, K. Ogawa, and M. Yano. 1999. Quantization of flavonoid constituents in Citrus fruits. Journal of Agricultural and Food Chemistry 47: 3565-3571.
51.Kijas, J. M. H., J. C. S. Fowler, and M. R. Thoms. 1995. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38: 349-355.
52.Kumar, A. and J. L. Bennetzen. 1999. Plant retrotransposon. Annual Review of Genetics 33: 479-532.
53.Moore, G. A. 2001. Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends in Genetics 17: 536-540.
54.Mulas, M. 1992. Biometric analysis of leaf histological characters in Citrus germplasm. Proceeding of the International Society of Citriculture 1: 53-58.
55.Nicolosi, E., Z. N. Deng, A. Gentile, S. La Malfa, G. Continella, E. Tribulato. 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics 100: 1155-1166.
56.Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton, and P. A. Furerst. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79: 361-382.
57.Pavlicek A., S. Hrda, and J. Flegr. 1999. FreeTree - Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha) 45: 97-99.
58.Protopapadakis, E. and X. Papanikolaou. 1998. Characterization of Citrus aurantium and C. taiwanica rootstocks by isoenzyme and essential oil analysis. The Journal of Horticultural Science & Biotechnology 73: 81-85.
59.Salazar, C. G. 1965. Comparative anatomy of citrus in relation to cold hardiness. Dissection Abstracts 26: 1269-1270.
60.Sadka, A., E. Dahan, E. Or., M. Roose, K. B. Marsh, and L. Cohen. 2001. Comparative analysis of mitochondria citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Australian Journal of Plant Physiology 28: 383-390.
61.Scora, R. W. 1975. On the history and origin of Citrus. Bulletin of the Torrey Botanical Club 102: 369-375.
62.Singh, R. and N. Nath, 1969. Practical approach to the classification of Citrus. Proceeding of the First International Citrus Symposium 1: 435-440.
63.Spiegel-roy, P. and E. E. Goldschemidt. 1996. Citrus and its relatives. p. 19- 46. In: Biology of Citrus. Cambridge, UK.
64.Swingle, W. T. 1948. The botany of Citrus and its wild relatives of the orange subfamily. p. 128-474. In: Reuther, W., H. J. Webber, and L. D. Batchelor. (eds.) The citrus industry, vol. 1st edn. University of California, Berkeley, USA.
65.Swingle, W. T. and P. C. Reece. 1967. The botany of citrus and its wild relatives. p.190-430. In: Reuther, W., H. J. Webber, and L. D. Batchelor. (eds.) The citrus industry, vol. 2nd edn. University of California, Berkeley, USA.
66.Tanaka, T. 1926. A new species of Citrus from Formosa. Proceeding of the Imperial Academy 2: 345-347.
67.Tanaka, T. 1954. Species problem in Citrus. Japanese Society for Promotion of Science. Tokyo, Japan.
68.This, P., C. Cuisset, and J. M. Boursiquot. 1997. Development of stable RAPD markers for the identification of grapevine rootstocks and the analysis of genetic relationships. American Journal of Enology and Viticulture 48: 492-501.
69.Torres, A. M., R. K. Soost, and U. Diedenhofen. 1978. Leaf isozymes as genetic markers in Citrus. American Journal of Botany 65: 869-881.
70.Torres, A. M., R. K. Soost, and T. M. Lastovicka. 1982. Citrus isozyme. The Journal of Heredity 73: 335-339.
71.Weder, J. P. K. 2002. Influence of experimental conditions on the reproducibility of RAPD-PCR identification of legumes and cereals. Lebensmittel-Wissenschaft und-Technologie 35: 233-238.
72.Wutscher H. K. 1979. Citrus rootstocks. Horticultural Reviews 1: 237-269.
73.Wutscher H. K. and K. D. Bowman. 1999. Performance of ‘Valencia’ orange on 21 rootstocks in central Florida. HortScience 34: 622-624.
74.Xiang, C. and M. L. Roose. 1988. Frequency and characteristics of nucellar and zygotic seedlings in 12 citrus rootstocks. Scientia Horticulturae 37: 47-59.
75.Yamamoto, M. and S. Kobayashi. 1996. Polymorphism in chloroplast DNA in citrus. Journal of Japanese Society Horticultural Science 65: 291-296.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top