跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅姿
研究生(外文):YA-TZU CHANG
論文名稱:I.C型肝炎病毒非結構性蛋白質NS5A對Ras-ERK訊息傳遞路徑及下游分子的影響II.C型肝炎病毒非結構性蛋白質NS4A與真核細胞轉譯延伸因子的相互作用關係
論文名稱(外文):I.The Effects of Hepatitis C Virus NS5A Protein on Ras-ERK Signaling Pathway and Its Downstream MoleculesII.The Interaction between Hepatitis C VirusNS4A Protein and eEF1A
指導教授:張鑫張鑫引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:51
中文關鍵詞:C型肝炎病毒非結構性蛋白質轉譯延伸因子訊息傳遞路徑
外文關鍵詞:NS5Asignaling pathwayeEF1ANS4AHCV
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
C型肝炎病毒 (Hepatitis C virus) 為一單股正向RNA病毒,會感染人類造成C型肝炎。約有85% 的感染者會轉變成慢性肝炎,伴隨肝硬化的併發症,甚至導致肝細胞癌 (hepatocellular carcinoma),臨床上多以干擾素合併ribavirin來治療患者。由於目前仍無法利用細胞培養的系統培養出C型肝炎病毒,對其致病機轉的了解還不十分清楚。近幾年的研究指出,HCV的非結構性蛋白質NS5A是造成干擾素抗藥性的可能因子之一;NS5A也會與細胞內的訊息蛋白質結合,干擾細胞内的訊息傳導路徑,例如MAPK (mitogen activated protein kinase) 與TNF-α(tumor necrosis factor-α) 的傳導路徑。MAPK傳導路徑可以調控細胞的生長與分化,而Ras-ERK 為其中的一條訊息傳遞路徑。在本實驗中利用受doxycycline調控表現NS5A的HeLa-tetoff-NS5A細胞株與HepG2-teton-NS5A細胞株,探討NS5A對Ras-ERK訊息傳遞路徑以及下游分子的影響。在HepG2-teton-NS5A細胞株中,當NS5A被誘導表現時,ERK1/2磷酸化的情形會受到抑制,但上游分子MEK1/2的磷酸化與MKP1蛋白質表現量皆不受NS5A影響。以流式細胞儀分析HepG2-teton-NS5A細胞株時,發現誘導NS5A表現並不會對細胞周期造成影響。因此,NS5A如何抑制ERK磷酸化以及ERK磷酸化減少後對細胞生長的影響仍需進一步探討。

目前已知HCV非結構性蛋白質NS4A為NS3的輔助因子 (cofactor),NS4A會與NS3結合,增進NS3在serine protease的切割作用,對於HCV的非結構性蛋白質的成熟扮演重要的角色。本實驗室先前利用GST pull down的方法發現GST-NS4A與eEF1A有結合作用,更進一步利用活體外轉譯系統發現eEF1A是利用羧基端與 GST-NS4A結合。此外,最近的研究顯示NS4A會抑制蛋白質的合成,但其作用機制則不明瞭。本研究利用免疫沉澱,觀察細胞內兩個蛋白質互相作用的情形。結果發現NS4A會與細胞內全長的eEF1A互相結合,但卻無法與eEF1A氨基端(1-240)或羧基端(201-462)的次功能區域結合。由定點突變的實驗,發現NS4A胺基酸28的位置由arginine變異成alanine時會破壞其與eEF1A之間的結合能力。是否NS4A對細胞內蛋白質合成的抑制是因其與eEF1A結合導致,以及eEF1A在HCV複製時所扮演的角色,則需作進一步的探討。
Hepatitis C virus (HCV) is a positive, single-stranded RNA virus. Human infected by HCV causes type C hepatitis. Approximately 85% of persons infected with HCV develop chronic hepatitis and may lead to hepatocellular carcinoma. Because there is no efficient cell culture system for HCV infection and replication, the molecular mechanism of HCV pathogenesis is not well understood. NS5A is a non-structural protein of HCV. It participates in interferon resistance. NS5A has been shown to interact with a variety of cellular signaling proteins and perturb the signal transduction pathways such as MAPK and TNF-a signaling pathways. Ras-ERK is a MAPK signaling pathway involved in regulation of cell proliferation and cell growth. In this study, doxycycline-regulated HeLa-tetoff-NS5A and HepG2-teton-NS5A cell lines were used to examine the effect of NS5A on Ras-ERK signaling pathway and its downstream molecules. The induction of NS5A in HepG2-teton NS5A cells markedly reduced the level of phosphorylated ERK1/2, but no significant difference was detected on the level of phosphorylated MEK1/2 and the expression of MKP1. Flow cytometry analyses indicate that the NS5A has no significant effect on the regulation of cell cycle. Therefore, the mechanisms of NS5A involved in the down-regulation of ERK pathway and cell growths remain to be elucidated.

The HCV non-structural protein NS4A interacts with NS3 and is a cofactor of NS3 serine-type protease essential for the proteolytic processing of the viral polyprotein. By performing GST pull down assay, our laboratory has previously identified eEF1A that specifically interacted with GST-NS4A. In combination with in vitro translation system the C-terminal domain of eEF1A was identified to be involved in the interaction. NS4A was recently reported to inhibit protein synthesis, but the mechanism remains unclear. In this study, the interaction between NS4A and eEF1A was confirmed by immunoprecipitation assay following cotransfection of plasmids ecoding NS4A and eEF1A into culture cells. NS4A interacted with full length eEF1A, but not the N-terminal (amino acid 1-240) or C-terminal (amino acid 201-462) eEF1A. Furthermore, a mutation at amino acid Arg-28 disrupts the interaction between NS4A and eEF1A. Whether NS4A interferes with protein synthesis by forming complex with eEF1A and what’s the role of eEF1A on HCV replication remain to be elucidated.
目錄...........................................................1

中文摘要....................................................2

英文摘要....................................................3

緒論............................................................4

本論文研究方向.........................................11

材料與方法................................................12

結果...........................................................19

討論...........................................................24

圖表...........................................................28

參考文獻....................................................41

附圖...........................................................50
Aoki, H., Hayashi, J., Moriyama, M., Arakawa, Y., and Hino, O. (2000). Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J. Virol. 74, 1736-1741.

Arima, N., Kao, C. Y., Licht, T., Padmanabhan, R., and Sasaguri, Y. (2001). Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. J. Biol. Chem. 276, 12675-12684.

Asabe, S. I., Tanji, Y., Satoh, S., Kaneko, T., Kimura, K., and Shimotohno, K. (1997). The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J. Virol. 71, 790-796.

Bartenschlager, R., Lohmann, V., Wilkinson, T., and Koch, J. O. (1995). Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J. Virol. 69, 7519-7528.

Bouchard, C., Thieke, K., Maier, A., Saffrich, R., Hanley-Hyde, J., Ansorge, W., Reed, S., Sicinski, P., Bartek, J., and Eilers, M. (1999). Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321-5333.

Bradley, D. W., McCaustland, K. A., Cook, E. H., Schable, C. A., Ebert, J. W., and Maynard, J. E. (1985). Posttransfusion non-A, non-B hepatitis in chimpanzees. Physicochemical evidence that the tubule-forming agent is a small, enveloped virus. Gastroenterology 88, 773-779.

Brass, V., Bieck, E., Montserret, R., Wolk, B., Hellings, J. A., Blum, H. E., Penin, F., and Moradpour, D. (2002). An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J. Biol. Chem. 277, 8130-8139.

Brondello, J. M., Pouyssegur, J., and McKenzie, F. R. (1999). Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514-2517.

Cheng, J. C., Chang, M. F., and Chang, S. C. (1999). Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3'' end of the viral RNA. J. Virol. 73, 7044-7049.

Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., and Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362.

Chung, K. M., Lee, J., Kim, J. E., Song, O. K., Cho, S., Lim, J., Seedorf, M., Hahm, B., and Jang, S. K. (2000). Nonstructural protein 5A of hepatitis C virus inhibits the function of karyopherin beta3. J. Virol. 74, 5233-5241.

Cimarelli, A., and Luban, J. (1999). Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein. J. Virol. 73, 5388-5401.

Condeelis, J. (1995). Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem. Sci. 20, 169-170.

Darke, P. L., Jacobs, A. R., Waxman, L., and Kuo, L. C. (1999). Inhibition of hepatitis C virus NS2/3 processing by NS4A peptides. Implications for control of viral processing. J. Biol. Chem. 274, 34511-34514.

Das, T., Mathur, M., Gupta, A. K., Janssen, G. M., and Banerjee, A. K. (1998). RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proc. Natl. Acad. Sci. U S A 95, 1449-1454.

Elazar, M., Cheong, K. H., Liu, P., Greenberg, H. B., Rice, C. M., and Glenn, J. S. (2003). Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J. Virol. 77, 6055-6061.

Failla, C., Tomei, L., and De Francesco, R. (1995). An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. J. Virol. 69, 1769-1777.

Florese, R. H., Nagano-Fujii, M., Iwanaga, Y., Hidajat, R., and Hotta, H. (2002). Inhibition of protein synthesis by the nonstructural proteins NS4A and NS4B of hepatitis C virus. Virus Res. 90, 119-131.

Gale, M., Jr., Kwieciszewski, B., Dossett, M., Nakao, H., and Katze, M. G. (1999). Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J. Virol. 73, 6506-6516.

Gale, M. J., Jr., and Katze, M. G. (2002)
Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and molecular biology reviews 64, 239-280

Gale, M. J., Jr., Korth, M. J., Tang, N. M., Tan, S. L., Hopkins, D. A., Dever, T. E., Polyak, S. J., Gretch, D. R., and Katze, M. G. (1997). Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230, 217-227.

Giambartolomei, S., Covone, F., Levrero, M., and Balsano, C. (2001). Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 20, 2606-2610.

Gonen, H., Smith, C. E., Siegel, N. R., Kahana, C., Merrick, W. C., Chakraburtty, K., Schwartz, A. L., and Ciechanover, A. (1994). Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc. Natl. Acad. Sci. U S A 91, 7648-7652.

Gong, G., Waris, G., Tanveer, R., and Siddiqui, A. (2001). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc. Natl. Acad. Sci. U S A 98, 9599-9604.

Ghosh, A. K., Steele, R., Meyer, K., Ray, R., and Ray, R. B. (1999). Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J. Gen. Virol. 80 ( Pt 5), 1179-1183.

Ghosh, A. K., Majumder, M., Steele, R., Meyer, K., Ray, R., and Ray, R. B. (2000). Hepatitis C virus NS5A protein protects against TNF-alpha mediated apoptotic cell death. Virus Res. 67, 173-178.

He, Y., Nakao, H., Tan, S. L., Polyak, S. J., Neddermann, P., Vijaysri, S., Jacobs, B. L., and Katze, M. G. (2002). Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J. Virol. 76, 9207-9217.

He, Y., Tan, S. L., Tareen, S. U., Vijaysri, S., Langland, J. O., Jacobs, B. L., and Katze, M. G. (2001). Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A. J. Virol. 75, 5090-5098.

Hirota, M., Satoh, S., Asabe, S., Kohara, M., Tsukiyama-Kohara, K., Kato, N., Hijikata, M., and Shimotohno, K. (1999). Phosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation. Virology 257, 130-137.

Hoang, A. T., Cohen, K. J., Barrett, J. F., Bergstrom, D. A., and Dang, C. V. (1994). Participation of cyclin A in Myc-induced apoptosis. Proc. Natl. Acad. Sci. U S A 91, 6875-6879.

Huynh, H. T., Nguyen, T. T., Chow, P. K., Tan, P. H., Soo, K. C., and Tran, E. (2003). Over-expression of MEK-MAPK in hepatocellular carcinoma: Its role in tumor progression and apoptosis. BMC Gastroenterol 3, 19.

Ide, Y., Tanimoto, A., Sasaguri, Y., and Padmanabhan, R. (1997). Hepatitis C virus NS5A protein is phosphorylated in vitro by a stably bound protein kinase from HeLa cells and by cAMP-dependent protein kinase A-alpha catalytic subunit. Gene 201, 151-158.

Ishido, S., Fujita, T., and Hotta, H. (1998). Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus. Biochem. Biophys. Res. Commun. 244, 35-40.

Johnson, C. M., Perez, D. R., French, R., Merrick, W. C., and Donis, R. O. (2001). The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1. J. Gen. Virol. 82, 2935-2943.

Kaito, M., Watanabe, S., Tsukiyama-Kohara, K., Yamaguchi, K., Kobayashi, Y., Konishi, M., Yokoi, M., Ishida, S., Suzuki, S., and Kohara, M. (1994). Hepatitis C virus particle detected by immunoelectron microscopic study. J. Gen. Virol. 75 ( Pt 7), 1755-1760.

Kaneko, T., Tanji, Y., Satoh, S., Hijikata, M., Asabe, S., Kimura, K., and Shimotohno, K. (1994). Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem. Biophys. Res. Commun. 205, 320-326.

Kato, N., Lan, K. H., Ono-Nita, S. K., Shiratori, Y., and Omata, M. (1997). Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J. Virol. 71, 8856-8859.

Kato, J., Kato, N., Yoshida, H., Ono-Nita, S. K., Shiratori, Y., and Omata, M. (2002). Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J. Med. Virol. 66, 187-199.

Keyse, S. M. (1998). Protein phosphatases and the regulation of MAP kinase activity. Semin. Cell Dev. Biol. 9, 143-152.

Khabar, K. S., Al-Zoghaibi, F., Al-Ahdal, M. N., Murayama, T., Dhalla, M., Mukaida, N., Taha, M., Al-Sedairy, S. T., Siddiqui, Y., Kessie, G., and Matsushima, K. (1997). The alpha chemokine, interleukin 8, inhibits the antiviral action of interferon alpha. J. Exp. Med. 186, 1077-1085.

Kim, J., Lee, D., and Choe, J. (1999). Hepatitis C virus NS5A protein is phosphorylated by casein kinase II. Biochem. Biophys. Res. Commun. 257, 777-781.

Kuo, G., Choo, Q. L., Alter, H. J., Gitnick, G. L., Redeker, A. G., Purcell, R. H., Miyamura, T., Dienstag, J. L., Alter, M. J., Stevens, C. E., and et al. (1989). An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364.

Lan, K. H., Sheu, M. L., Hwang, S. J., Yen, S. H., Chen, S. Y., Wu, J. C., Wang, Y. J., Kato, N., Omata, M., Chang, F. Y., and Lee, S. D. (2002). HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21, 4801-4811.

Lavanchy, D. & 31 other authors (1999).Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J. Viral. Hepat. 6, 35-47.

Lin, C., Thomson, J. A., and Rice, C. M. (1995). A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. J. Virol. 69, 4373-4380.

Lin, C., Wu, J. W., Hsiao, K., and Su, M. S. (1997). The hepatitis C virus NS4A protein: interactions with the NS4B and NS5A proteins. J. Virol. 71, 6465-6471.

Macdonald, A., Crowder, K., Street, A., McCormick, C., and Harris, M. (2004). The hepatitis C virus NS5A protein binds to members of the Src family of tyrosine kinases and regulates kinase activity. J. Gen. Virol. 85, 721-729.

Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K., and Harris, M. (2003). The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling. J. Biol. Chem. 278, 17775-17784.

Majumder, M., Ghosh, A. K., Steele, R., Ray, R., and Ray, R. B. (2001). Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J. Virol. 75, 1401-1407.

Moscatello, D. K., Holgado-Madruga, M., Emlet, D. R., Montgomery, R. B., and Wong, A. J. (1998). Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem. 273, 200-206.

Murphy, M., Mabruk, M. J., Lenane, P., Liew, A., McCann, P., Buckley, A., Flatharta, C. O., Hevey, D., Billet, P., Robertson, W., et al. (2002). Comparison of the expression of p53, p21, Bax and the induction of apoptosis between patients with basal cell carcinoma and normal controls in response to ultraviolet irradiation. J. Clin. Pathol. 55, 829-833.

Murray, J. W., Edmonds, B. T., Liu, G., and Condeelis, J. (1996). Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J. Cell. Biol. 135, 1309-1321.

Neddermann, P., Clementi, A., and De Francesco, R. (1999). Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J. Virol. 73, 9984-9991.

Pang, P. S., Jankowsky, E., Planet, P. J., and Pyle, A. M. (2002). The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J. 21, 1168-1176.

Park, K. J., Choi, S. H., Choi, D. H., Park, J. M., Yie, S. W., Lee, S. Y., and Hwang, S. B. (2003). 1Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J. Biol. Chem. 278, 30711-30718.

Park, K. J., Choi, S. H., Lee, S. Y., Hwang, S. B., and Lai, M. M. (2002). Nonstructural 5A protein of hepatitis C virus modulates tumor necrosis factor alpha-stimulated nuclear factor kappa B activation. J. Biol. Chem. 277, 13122-13128.

Polyak, S. J., Khabar, K. S., Paschal, D. M., Ezelle, H. J., Duverlie, G., Barber, G. N., Levy, D. E., Mukaida, N., and Gretch, D. R. (2001). Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol. 75, 6095-6106.

Racker, E. (1992). Chaperones and matchmakers: inhibitors and stimulators of protein phosphorylation. Curr. Top Cell Regul 33, 127-143.

Rivard, N., McKenzie, F. R., Brondello, J. M., and Pouyssegur, J. (1995). The phosphotyrosine phosphatase PTP1D, but not PTP1C, is an essential mediator of fibroblast proliferation induced by tyrosine kinase and G protein-coupled receptors. J. Biol. Chem. 270, 11017-11024.

Ryan, K. M., Ernst, M. K., Rice, N. R., and Vousden, K. H. (2000). Role of NF-kappaB in p53-mediated programmed cell death. Nature 404, 892-897.

Saragovi, H. U., Rebai, N., Di Guglielmo, G. M., Macleod, R., Sheng, J., Rubin, D. H., and Greene, M. I. (1999). A G1 cell cycle arrest induced by ligands of the reovirus type 3 receptor is secondary to inactivation of p21ras and mitogen-activated protein kinase. DNA Cell Biol. 18, 763-770.

Satoh, S., Hirota, M., Noguchi, T., Hijikata, M., Handa, H., and Shimotohno, K. (2000). Cleavage of hepatitis C virus nonstructural protein 5A by a caspase-like protease(s) in mammalian cells. Virology 270, 476-487.

Seeff, L. B. (1997). Natural history of hepatitis C. Hepatology 26, 21S-28S.

Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A., and Nishida, E. (1994). Microtubule severing by elongation factor 1 alpha. Science 266, 282-285.

Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501-2514.

Squadrito, G., Orlando, M. E., Cacciola, I., Rumi, M. G., Artini, M., Picciotto, A., Loiacono, O., Siciliano, R., Levrero, M., and Raimondo, G. (1999). Long-term response to interferon alpha is unrelated to "interferon sensitivity determining region" variability in patients with chronic hepatitis C virus-1b infection. J. Hepatol. 30, 1023-1027.

Street, A., Macdonald, A., Crowder, K., and Harris, M. (2004). The Hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J. Biol. Chem 279, 12232-12241.

Tanimoto, A., Ide, Y., Arima, N., Sasaguri, Y., and Padmanabhan, R. (1997). The amino terminal deletion mutants of hepatitis C virus nonstructural protein NS5A function as transcriptional activators in yeast. Biochem. Biophys. Res. Commun. 236, 360-364.

Tan, S. L., Nakao, H., He, Y., Vijaysri, S., Neddermann, P., Jacobs, B. L., Mayer, B. J., and Katze, M. G. (1999). NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc. Natl. Acad. Sci. U S A 96, 5533-5538.

Tanji, Y., Kaneko, T., Satoh, S., and Shimotohno, K. (1995). Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J. Virol. 69, 3980-3986.

Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N., and Lai, M. M. (1999). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107-110.

Tanji, Y., and Shimotohno, K. (1995). [Mechanism of hepatitis C virus protein processing]. Nippon. Rinsho. 53 Suppl., 25-29.

Tu, H., Gao, L., Shi, S. T., Taylor, D. R., Yang, T., Mircheff, A. K., Wen, Y., Gorbalenya, A. E., Hwang, S. B., and Lai, M. M. (1999). Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 263, 30-41.

Venema, R. C., Peters, H. I., and Traugh, J. A. (1991). Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J. Biol. Chem. 266, 12574-12580.

Waris, G., Livolsi, A., Imbert, V., Peyron, J. F., and Siddiqui, A. (2003). Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J. Biol. Chem. 278, 40778-40787.

Wolk, B., Sansonno, D., Krausslich, H. G., Dammacco, F., Rice, C. M., Blum, H. E., and Moradpour, D. (2000). Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J. Virol. 74, 2293-2304.

Yang, F., Demma, M., Warren, V., Dharmawardhane, S., and Condeelis, J. (1990). Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 347, 494-496.

Yang, S. H., Lee, C. G., Song, M. K., and Sung, Y. C. (2000). Internal cleavage of hepatitis C virus NS3 protein is dependent on the activity of NS34A protease. Virology 268, 132-140.

Zech, B., Kurtenbach, A., Krieger, N., Strand, D., Blencke, S., Morbitzer, M., Salassidis, K., Cotten, M., Wissing, J., Obert, S., et al. (2003). Identification and characterization of amphiphysin II as a novel cellular interaction partner of the hepatitis C virus NS5A protein. J. Gen. Virol. 84, 555-560.

陳婉伶.2002. C型肝炎病毒非結構性蛋白質NS5A對於細胞基因表現之影響.台大微生物所碩士論文.

廖珮茹.2003. C型肝炎病毒非結構性蛋白質NS5A對細胞生長的影響.台大微生物所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top