(3.238.98.214) 您好!臺灣時間:2021/05/08 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張靜雯
研究生(外文):Chin-Wen Chang
論文名稱:利用JAVA卡實做群體導向電子信封與簽章
論文名稱(外文):Group-Oriented Digital Signature and envelop with Java Card Implementation
指導教授:陳俊良陳俊良引用關係
指導教授(外文):Chuen-ling Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:52
中文關鍵詞:電子信封解密電子簽章JAVA卡門檻理論群體導向
外文關鍵詞:decryptionJava cardGroup-orienteddigital envelopdigital signaturethreshold scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展,電子簽章與電子信封在現今的電子商務中越發重要。一個組織持有一組 密鑰/公鑰 來代表這個組織的情況也越來越普遍。對於這種情況,群體導向門檻理論提供了便利而安全的方法來產生群體簽章或是破解密文。任何群體以外的人可以傳送一份以這個群體公鑰加密過的文件給這個群體,而只要參與解密的群體成員人數大於或是等於門檻限制,就可以正確解密這份密文。
群體簽章的方面,只要參與簽章的群體成員人數大於或是等於門檻人數,就能夠產生有效的群體簽章,而任何群體以外的人都可以簡單的驗證這份簽章的有效性。在這份論文裡,我們應用了沒有密鑰認證中心的門檻理論,群體簽章和解密都是由參與成員產生,並不需要一個被信任的代理人來處理。根據這個理論我們設計了一個以Java卡實做群體導向門檻電子簽章和信封的系統。Java卡不只可以提供密鑰安全和便利性,更有相當強大的運算能力。利用這些優點,我們可以將和密鑰有關的運算在卡片上進行,讓密鑰不會以未加密過的型態出現在卡片以外。最後我們從實作系統的結果,來討論現今Java 卡的限制和需要提升的弁遄C
As technology grows, digital signature and envelop have become more and more important in electronic commerce world. It becomes common that a group owns a secret key/public key to represent the group. A group-oriented threshold scheme provides a secure and convenient way for signing a group signature or decrypting a cipher text. Any outsider can send an encrypted message to this group, the cipher text can be deciphered as long as the participating member number is larger than or equal to the threshold number. And the group signature can be generated as long as the participating member number is larger than or equal to the threshold number. Any outsider can verify the signature. In this paper, we adapted a threshold scheme without Key Authentication Center, signature and decryption are mutually generated without any trust agent involved. We then designed a whole group-oriented threshold signature and envelop system with Java card implementation. Java cards provide not only security and portability for secret keys but also powerful on-card computation capability. This enables us to keep secret value computations on card therefore secret keys are never revealed in plaintext outside Java cards. From performance of our system, we discussed the limitation of today’s Java card.
1. Introduction 1
2. Related Theories and Schemes 5
2.1. Secret Sharing Schemes 5
2.2. ElGamal Cryptosystem 6
3. Group Oriented (t,n) Threshold Digital Signature and Envelop without a Trust Party 7
3.1. Group Public Key Generation Phase 8
3.1.1. Secret Sharing Phase 8
3.2. Group Decryption Phase 9
3.2.1. Encryption Phase 9
3.2.2. Decryption Phase 9
3.3. Group Signature Generation Phase 11
3.3.1. Partial Signature Generation and Verification 11
3.3.2. Group Signature Generation 12
3.3.3. Group Signature Verification 12
4. Our System Design 15
4.1. Public Key Generation Phase 15
4.2. Decryption Phase 24
4.3. Group Signature Generation Phase 28
5. Design Implementation 37
5.1. Threshold Digital Signature and Envelop System PC Version 37
5.1.1. Java.math.BigInteger 37
5.1.2. Performance 39
5.2. Threshold Digital Signature and Envelop System Java Card Version 41
5.2.1. Java Card Environment 42
5.2.2. BigByte 44
5.2.3. Performance 45
6. Conclusion 49
7. References 51
1.AGNEW, G.B., MULLIN, R.C., and VANSTONE, S>A.: “Improved digital signature scheme based on discrete exponentiation”, Electronics Letters, 1990, 26, (14), pp.1024-1025.

2.BORSELIUS, N., MITCHELLl, C.J., and WILSON, A. : “On the value of Threshold signature”. Mobile VCE Research Group, Information Security Group, Royal Holloway, University of London. August 6, 2002.

3.CHAUM, D., and VAN HEYST, E. : “Group signature”, in “Advances in Cryptology”. Proceedings of Eurocrypt ’91, pp.257-265, 8-11 April 1991.

4.DESMEDT,Y. : “Some Recent Research Aspects of Threshold Cryptography”.

5.DESMEDT,Y. : “Society and group oriented cryptography: a new concept “,in ‘Advances in Cryptology’. Proceeding of Crypto ’87, pp120-127,16-20 August 1988.

6.DESMEDT,Y. : “Threshold cryptography”. in W. Wolfwicz, editor, Proceedings of the 3rd Symposium on : State and Progress of Research in Cryptography, pp. 110-122, February 15-16, 1993. Rome, Italy, invited paper.

7.DESMEDT,Y., FRANKEL,Y. : “Threshold cryptosystem”, EE & CS Department, University of Wisconsin-Milwaukee, Milwaukee, Springer-Verlag , 1998.

8.DESMEDT,Y., FRANKEL,Y. : “Threshold cryptosystem”, in “Advances in Cryptology”. Proceedings of Crypto ’89, pp.307-315, 20-24 August 1989.

9.DESMEDT,Y., FRANKEL,Y. : “Shared generation of authenticators”, in “Advances in Cryptology”. Proceedings of Crypto ’91, pp.11-15 August 1991.

10.DESMEDT,Y., FRANKEL,Y. : “Homomorphic zero-knowledge threshold schemes over any finite abelian group”. SIAM Journal on Discrete Mathematics, 7(4), pp.667-679, November 1994.

11.ELGAMAL,T. : “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans., 1985, IT_31, pp.469-472.

12.FRANKEL,Y. : “A practical protocol for large group oriented networks”, in “Advances in Cryptology”. Proceedings of Eurocrypt ’89, pp.56-61. April 1989.

13.GOLDWASSER, S., MICALI, S. and RACKOFF, C. : “The knowledge of complexity of interactive proof systems”. SIAM J. Comput.18(1), pp.186-208, February 1989.

14.GAILI, Z., HABER, S. and YUNG, H. : “Minimum-knowledge interactive proofs for decision problems”. SIAM J. Comput.18(4). pp.711-739, August 1989.

15.HARN, L. : “Group-oriented (t,n) threshold digital signature scheme and digital multisignature”, IEE Proc.Comput. Digit. Vol. 141, No.5, September 1994

16.HARN, L., and YANG, S. : “Group-oriented undeniable signature schemes without the assistance of a mutually trusted party”, in “Advances in Cryptology”. Proceedings of Auscrypt ’92, December 1992.

17.HWANG, T. : “Cryptosystem for group oriented cryptography”, in “Advances in Cryptology”. Proceedings of Eurocrypt ’90, pp.352-360. April 1990.

18.LANGFORD, S.K. : “Weaknesses in some threshold cryptosystems”. InN. Koblitz, editor, Advances in Cryptology, Crypto ’96, Proceedings (Lecture Notes in Computer Science 1109), pp.74-82. Springer-Verlag, 1996. Santa Barbara, California, U.S.A., August 18-22.

19.PEDERSEN, T.P. : “A Threshold Cryptosystem without a Trusted Party (Extended abstract)”, Aarhus University, Computer Science Department , Springer-Verlag, 1998

20.RIVEST, R.L., SHAMIR, A., and ADELMAN,L.: “A method for obtaining digital signatures and public-key cryptosystem”, Commun. Of ACM, 1978, 21, (2), pp. 120-126

21.SHAMIR, A. : “How to share a secret”, Comm. ACM, 1979, 22, pp.612-613.

22.“The digital signature standard”, Comm. ACM, 1992, 35, (7), pp.36-40.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔