(34.226.234.102) 您好!臺灣時間:2021/05/12 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳權忠
研究生(外文):Chiuan-Jung Chen
論文名稱:蛋白質迴圈結構預測
論文名稱(外文):Protein Loop Modeling
指導教授:高成炎高成炎引用關係
指導教授(外文):Cheng-Yan Kao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:50
中文關鍵詞:蛋白質迴圈結構
外文關鍵詞:structure predictionProtein Loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
A major limitation of current comparative modeling method is the accuracy with which regions that are structurally divergent from homologues of known structure can be modeled, and we call this kind of problem loop modeling problem.
There are two difficulties of loop modeling problem; the first one is how to generate a feasible conformation of loop, and the other is to find the closest conformation to the native one.
Here we present a method which combine several algorithm to solve these two difficulties describing above. For the first problem, we adopt an algorithm called CCD (Cyclic Coordinate Descent), which iteratively change the phi and phi angles from the start residue to the end residue to make the conformation close. And the other one, we use a simple energy function to evaluate the stability of a given loop conformation, and the search algorithm FCEA to find the lowest energy conformation from the random building conformations. We evaluate this method by predict a test set of 14 loops, and the final RMSD of them are almost between 0.72Å~2.81 Å.
Chapter 1 Introduction 1
1.1 Motivation 1
Ab initio approach: 2
Database Approach: 3
1.2 Overview 4
Chapter 2 Cyclic Coordinate Descent 6
2.1 Introduction 6
2.2 Overview 7
2.3 Minimize Squared Distances 9
2.4 The ability of CCD 11
Chapter 3 The Family Competition Evolutionary Approach 13
3.1 Introduction 13
3.2 Overview 13
3.3 Family Competition 15
3.4 Chromosome Representation 17
3.5 Recombination Operators 18
Modified Discrete Recombination: 18
BLX-0.5 and Intermediate Recombination: 18
3.6 Mutation Operators 19
Self-Adaptive Gaussian Mutation: 20
Self-Adaptive Cauchy Mutation: 20
Decreasing-based Gaussian Mutation: 22
3.7 Adaptive Rules 23
A-decrease-rule: 23
D-increase-rule: 23
Chapter 4 A New Combinatorial loop modeling algorithm 24
4.1 Overview 24
4.2 Construct Backbone Conformation 25
4.3 FCCD:The combinatorial algorithm of FCEA and CCD 25
4.3.1 Chromosome Representation: 27
4.3.2 Offspring: 27
4.3.3 CCD: 28
4.4 Side-Chain Prediction with Rotamer Library 28
4.5 Energy function 30
Chapter 5 Conclusions 33
5.1 Test Set 33
5.2 Energy Function vs. RMSD 33
5.3 The Search ability of FCCD 36
5.4 result 38
5.5 Discussion and Future works 40
reference 42
Appendix A 45
[1]Dudek MJ, Ramnarayan K, Ponder JW. 1998. Protein structure prediction using a combination of sequence homology and global energy minimization: II, Energy functions. J Comp Chem 19:548-573
[2]Nakajima N, Higo J, Kidera A. 2000. Free energy landscapes of peptides by enhanced conformational sampling. J Mol Biol 296:197-216
[3]Rapp CS, Friesner RA. 1999. Prediction of loop geometics using a generalized Born model of salvation effect. Proteins 35:173-183
[4]Samudrala R, Moult J. 1998. A graph-theoretic algorithm for comparative modeling of protein structure. J Mol Biol 279:287-302
[5]Wojcik J, Momon JP, Chomilier J. 1999. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhausitive loop classification. J Mol Biol 289:1469-1490
[6]Deane CM, Blundell TL. 2000. A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins 40:135-144
[7]Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA. 2004. A hierarchical approach to all-atom protein loop prediction. Proteins 55 351-367
[8]Fidelis K, Stern PS, Bacon D, Moult J. 1994. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng 7:953-960
[9]Lessel U, Schomburg D. 1994. Similarities between protein 3D structures. Protein Eng 7 1175-1187
[10]Claessens M, Cutsem EV, Lasters I, Wodak S. 1989. Modeling the polypeptide backbone with ‘spare parts’ from known protein structures. Protein Eng 4: 335-354
[11]Benner SA, Gonnet GH, Cohen MA. 1993. Empirical and structural models for insertions and deletions in the divergent evolution of proteins. J Mol Biol 229:1065-1082
[12]Flores TP, Orengo CA, Moss DS, Thornton JM. 1993. Comparison of conformational characteristics in structurally similar protein pairs. Protein Sci 2:1811-1826
[13] Canutescu AA, Dunbrack JR RL. 2003. Cyclic coordinate descent:A robotics algorithm for protein loop closure. Protein Sci 12:963-972
[14]Wang LT, Chen CC. 1991. A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Trans. Robotics Automation 7:489-499

[15]Yang JM. 2001. A family competition evolutionary approach of global optimization in neural networks, optical thin-film design, and structure-base drug design. PhD thesis, NTU
[16]Eshelman LJ, Schaffer JD. 1993. Real-coded genetic algorithm and interval-shemata. Foundation of Genetic algorithm 2, L.D. Whitley, E.D. Morgan Kaufmann Publishers, Inc. :187-202
[17]Back T. 1996. Evolutionary Algorithm in Theory and Practice. Oxford University Press, New York, USA, 1996.
[18]Yang JM, Kao CY, Horng JT. 1997. A continuous genetic algorithm for global optimization. Proc. of the Seventh Int. Conf. on Genetic Algorithm :230-237
[19]Canutescu AA, Shelenkov AA, Dunbrack JR RL. 2003. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001-2014
[20]Yang JM. 2003. Development and evaluation of a generic evolutionary method for protein-ligand docking. J Comp Chem 25:843-857
[21]Gehlhaar DK, Verkhivker GM, Rejto P, Sherman CJ, Fogel DB, Fogel LJ, Freer ST. 1995. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317-324
[22]Knegtel RMA, Antoon J, Rullmann C, boelens R, Kaptein R. 1994. MONTY: A Monte Carlo approach to protein-DNA recognition. J Mol Biol 235:318-324
[23]Fiser A, Do RKG, Sali A. 2000. Modeling of loops in protein structures. Protein Sci 9:1753-1773
[24]Carol AR, Charlie EM Strauss, Dylan C, David B. 2004. Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55:656-677
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔