(3.227.0.150) 您好!臺灣時間:2021/05/08 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹力韋
研究生(外文):Li-Wei Chan
論文名稱:使用關聯回饋從事以內容為基礎的環物影片檢索
論文名稱(外文):Content-Based Object Movie Retrieval by Use of Relevance Feedback
指導教授:洪一平洪一平引用關係
指導教授(外文):Yi-Ping Hung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:54
中文關鍵詞:內容檢索環物影片相似度測量值關聯回饋
外文關鍵詞:Relevance feedbackSimilarity measureObject movieContent-based retrieval
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的目的在於建構一個環物影片內容檢索系統,藉由此系統,使用者可以方便地從龐大的環物影片資料庫中,基於環物影片內容檢索出所需要的環物影片。環物影片相較於三維物件具有更接近真實的展示能力,同時具有容易取得及提供足夠互動的優點。為取得環物影片,可以利用相機對真實的物件從各個不同的視點取像,所擷取出的一組影像則稱為此物件的環物影片;其中所產生影像的數量可視為相機對物件取樣的密度,理論上,兩個相似的物件各自產生的環物影片,其位置上相對應的影像應該也會相當相似。因此,累加所有相對應影像的差異距離可以代表兩個環物影片間的相似度。基於以上的想法,在此論文中,我們設計了兩種特徵描述來表示一個環物影片的組成,根據這些特徵描述,我們定義了兩個環物影片之間的相似度測量值。在我們的系統中,可以用兩種形式的輸入來執行檢索,一種是用目標物件的環物影片,另ㄧ種是只以目標物件少數幾個視點所取得的影像。最後,我們提出了一套使用於環物影片檢索的關聯回饋技術。透過關聯回饋,讓我們可以更清楚的知道使用者所欲查詢的概念。
The aim of this thesis is to build a content-based object movie retrieval system. It is to retrieve the desired object movies for a user from a large object movie database, based on the contents of object movies. Object movie is a good representation of a physical object because it can provide 3D interactive viewing effect, while not requiring 3D reconstruction. An object movie refers to a set of images captured from different perspectives around a physical object. An object movie can be mapped into a manifold in the feature space. Two different sets of feature descriptors, dense descriptor and condensed descriptor, are designed to sample the manifold. Based on these descriptors, we define the dissimilarity measure between the query and the target in the object movie database. The query we considered can be either a complete object movie or simply be subset of different views of the object. An algorithm for relevance feedback is also proposed in our system to capture the concepts a user has.
CHAPTER 1 INTRODUCTION 1
1.1 3D Geometric Model Representation 1
1.2 Object Movie Representation 2
1.3 Content-Based Object Movie Retrieval 4
1.4 Thesis Organization 6
CHAPTER 2 RELATED WORKS 7
2.1 Content-based Approach to Object Retrieval 7
2.2 Relevance Feedback 10
CHAPTER 3 PROBLEM DEFINITION 12
3.1 Retrieving Scheme 12
3.2 Relevance Feedback 13
CHAPTER 4 FEATURE DESCRIPTOR 15
4.1 Dense Descriptor 15
4.1 Condensed Descriptor 18
CHAPTER 5 DISSIMILARITY MEASURE 20
5.1 Dissimilarity Measure 20
CHAPTER 6 RELEVANCE FEEDBACK 23
6.1 Search Process for Relevance Feedback 23
6.2 Our Proposed Approach 25
CHAPTER 7 EXPERIMENT AND RESULT 28
7.1 Object Movie Databases 28
7.1.1 First Database: OMDB1 29
7.1.2 Second Database: OMDB2 30
7.1.3 Third Database: OMDB3 34
7.2 Retrieval Without Relevance Feedbacks 36
7.2.1 Use of Object Movie Database: OMDB1 36
7.2.2 Use of Object Movie Database: OMDB2 41
7.2.3 Use of Object Movie Database: OMDB3 44
7.3 Feedback Evaluation 46
CHAPTER 8 CONCLUSION AND FUTURE WORK 49
8.1 Summary 49
8.2 Future Work 50
[1]I. Atmosukarto and P. Naval, “A Survey of 3D Model Retrieval Systems”, in http://www.comp.nus. edu.sg/~indri/downloads/literature-review.ps
[2] V. Castelli and L. D. Bergman, “Image Databases: Search and Retrieval of Digital Imagery”, J. Wiley & Sons. Inc., 2002.
[3]Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung, “On Visual Similarity Based 3D Model Retrieval”, EuroGraphics, Spain, 2003.
[4]I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos, “PicHunter: Bayesian Relevance Feedback for Image Retrieval,” International Conference on Pattern Recognition, pp. 361-369, 1996.
[5]I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos, “Target Testing and the PicHunter Bayesian Multimedia Retrieval System,” Proceedings of the Third Forum on Research and Technology Advances in Digital Libraries, pp. 66-75, May 1996.
[6]M. C. Cyr and B. K. Benjamin, “3D Object Recognition Using Shape Similiarity-Based Aspect Graph”, in Proc. of ICCV 2001.
[7] Ming-Kuei Hu, ”Visual pattern recognition by moment invariants” Information Theory, IEEE Transactions on, Volume: 8, Issue: 2, pp. 179 – 187, Feb 1962.
[8]Yi-Ping Hung, Chu-Song Chen, Yu-Pao Tsai, and Szu-Wei Lin, “Augmenting Panoramas with Object Movies by Generating Novel Views with Disparity-Based View Morphing,” Journal of Visualization and Computer Animation, Special Issue on Hallucinating the Real World from Real Images, Vol. 13, pp. 237-247, 2002.
[9] Khotanzad, A., Hong, Y.H., “Invariant image recognition by Zernike moments” Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 12 , Issue: 5 , pp. 489 – 497, May 1990.
[10] Mahmoudi, S.; Daoudi, M.;”3D models retrieval by using characteristic views”, Pattern Recognition, 2002. Proceedings. 16th International Conference on , Volume: 2 , 11-15, vol.2, pp. 457 – 460, Aug 2002.
[11] Patrick Min, "A 3D Model Search Engine," Ph.D. Thesis, January 2004.
[12] Sameer A. Nene and Shree K. Nayar, “A Simple Algorithm for Nearest NeighborSearch in High Dimensions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 9, September 1997.
[13] R. Schettini, G. Ciocca, S. Zuffi, “A Survey on methods for colour image indexing and retrieval in image databases”, Color Imaging Science: Exploiting Digital Media, J. Wiley, 2001.
[14] A. Selinger and R. C. Nelson, “Appearance-Based Object Recognition Using Multiple Views”, in Proc. of CVPR 2001.
[15] Serge Belongie, Jitendra Malik, Jan Puzicha, “Shape Matching and Object Recognition Using Shape Contexts” IEEE Transactions on pattern analysis and machine intelligence, Vol. 24, No.24, April 2002.
[16]  Jau-Ling Shih and Ling-Hwei Chen, “A Context-Based Approach for Color Image Retrieval,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16, pp. 239-255, 2002.
[17] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser, "The Princeton Shape Benchmark," to appear in Shape Modeling International, Genova, Italy, June 2004.
[18] Stauffer, C., Grimson, W.E.L., ” Adaptive background mixture models for real-time tracking”, Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. , Volume: 2 , 23-25, Vol. 2, pp. 252, June 1999.
[19] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman, David Dobkin, and David Jacobs, "A Search Engine for 3D Models", ACM Transactions on Graphics, 22(1), pp. 83-105, January 2003.
[20] C. Zhang and T. Chen, “Indexing and retrieval of 3D models aided by active learning”, In Proc. of ACM Multi-media, 2001.
[21] D. S. Zhang and G. Lu, “A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval”, In Proc. of the 5th ACCV, pp. 646-651, January 2002.
[22] Zhong Su, Hongjiang Zhang, Li, S., Shaoping Ma, ”Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning”. Image Processing, IEEE Transactions on , Volume: 12 , Issue: 8 , pp. 924 – 937, Aug. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔