(3.236.122.9) 您好!臺灣時間:2021/05/12 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳律閎
研究生(外文):Lu-Hong Chen
論文名稱:利用主軸曲線自動建立3維模型骨幹
論文名稱(外文):Automatic 3D Skeleton Generation Using Principal Curves
指導教授:傅楸善傅楸善引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:24
中文關鍵詞:主軸曲線骨幹
外文關鍵詞:principal curveskeleton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
We propose a method to automatically generate the skeleton of a 3D model by using principal curves since the definition of principal curves (smooth curves that pass the “middle” of a cloud of points) is similar to the definition of medial axis. At the beginning, an initial skeleton to roughly capture the topology of the model is given. The initial skeleton may be generated by user manually, by other existing automatic methods, or even by an existing skeleton of other similar model. Then, a fitting-and-smoothing algorithm is applied to adjust the skeleton to fit the definition of principal curve. If the result skeleton is noisy, an optional reconstruction method can be applied to remove some noises. The results indicate that the proposed method finds smooth skeletons of a wide variety of models with different initializations.
Our method is able to generate the skeleton of a 3D model within minutes on a Pentium IV 2.8 GHz PC. The algorithm is especially faster if the given initial skeleton is from the skeleton of a similar model or from the same model in different poses.
Abstract................................................1
1. Introduction...................................2
2. Previous Works.................................3
(1) MAT............................................3
(2) Reeb Graph Method..............................5
(3) Repulsive Force Field..........................5
3. Principal Curve................................7
4. Algorithm......................................9
(1) Projection.....................................10
(2) Cost Function and Smoothness...................10
(3) Vertex Optimization............................11
(4) Adding a Vertex................................13
(5) Reconstruction.................................13
(6) Complexity.....................................13
5. Experimental Results...........................14
(1) Initialized by Other Methods...................14
(2) Initialized by the Skeleton of Similar Models..17
(3) Initialized by the Skeleton of Different Poses.20
6. Conclusion and Future Works....................22
7. Reference......................................23
[1] N. Amenta, S. Choi, and R. Kolluri, “The Power Crust,” Proceedings of ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, pp. 249-260, 2001.
[2] I. Bitter, A. E. Kaufman and M. Sato, “Penalized-Distance Volumetric Skeleton Algorithm,” IEEE Transactions on Visualization and Computer Graphics, Vol. 7, No. 3, pp. 195-206, 2001.
[3] H. Blum, A Transformation for Extracting New Descriptors of Shape, MIT Press, Cambridge, MA, pp. 362-380, 1967.
[4] P. Delicado, “Another Look at Principal Curves and Surfaces,” Journal of Multivariate Analysis, Vol. 77, pp. 84-116, 2001.
[5] T. Hastie and W. Stuetzle, “Principal Curves,” Journal of the American Statistical Association, Vol. 84, No. 406, pp. 502-516, 1989.
[6] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Addison-Wesley, Reading, MA, 1992.
[7] B. Kégl, A. Krzy zak, T. Linder, and K. Zeger, “Learning and Design of Principal Curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 3, pp. 281-297, 2000.
[8] B. Kégl and A. Krzyzak, “Piecewise Linear Skeletonization Using Principal Curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, pp. 59-74, 2002.
[9] F. Lazarus and A. Verroust, “Level Sets Diagrams of Polyhedral Objects,” ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, pp. 130-140, 1999.
[10] P. C. Liu, F. C. Wu, W. C. Ma, R. H. Liang, and M. Ouhyoung, “Automatic Animation Skeleton Construction Using Repulsive Force Field,” Proceedings of Pacific Conference on Computer Graphics and Applications, Canmore, Canada, pp. 409-413, 2003.
[11] T. C. Lee, R. L. Kashyap, and C. N. Chu, “Building Skeleton Models via 3-D Medial Surface/Axis Thining Algorithms,” CVGIP: Graph Model Image Processing, Vol. 56, No. 6, pp. 462-478, 1994.
[12] R. Ogniewicz and M. Ilg, “Voronoi Skeletons: Theory and Applications,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Champaign, IL, pp. 63-69, 1992.
[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, Cambridge University Press, Cambridge, UK, 2002.
[14] Queen’s University, Belfast, “Finite Element Modelling Group,” http://sog1.me.qub.ac.uk/index.php, 2004.
[15] G. Reeb, “Sur les points siguliers d’une forme de Pfaff completement integrable ou d’une function numerique,” Comptes Rendus Acaqd. Science Paris, Vol. 222, pp. 847-849, 1946.
[16] S. Sandilya and S. R. Kulkami, “Principal Curves with Bounded Term,” IEEE Transactions on Information Theory, Vol. 48, No. 10, pp. 2789-2793, 2002.
[17] J. S. Simonoff, Smoothing Methods in Statistics, Springer, New York, 1996.
[18] Y. Zhou and A. Toga, “Efficient Skeletonization of Volumetric Objects,” IEEE Transactions on Visualization and Computer Graphics, Vol. 5, No. 3, pp. 192-206, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔