( 您好!臺灣時間:2021/05/13 20:23
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Han-Chen Huang
論文名稱(外文):A Study of Soil Moisture Hysteresis Effect in Unsaturated Soil
外文關鍵詞:Pumping effectHysteresis effectNumerical schemes
  • 被引用被引用:3
  • 點閱點閱:486
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
研究依據van Genuchten(1980)之土壤保水曲線關係式發展一可適用於遲滯現象之土壤水分遲滯模式,在已知土壤主要乾燥曲線及主要濕潤曲線之參數下,推衍出任一乾燥或濕潤狀態之土壤水分遲滯曲線;模式係以前人研究之實驗數據及本研究進行之實驗數據進行準確性分析,並與Scott model及KP model進行比較,結果顯示本研究所發展之土壤水分遲滯模式具備簡易、準確及方便等優點,並且能避免相關模式未能處理之汲取效應(Pumping effect)。

This study present a novel hysteresis model based on van Genuchten’s soil-moisture relationships. The proposed model yields series closed form relationships in which two shape factors and are determined from the main drying and wetting curves. Experiments and literature-cited data were used to assess model accuracy. The proposed model was also compared with the Scott and KP models. Analytical results indicate that the present model is simple, accurate and effective in constructing the series wetting and drying scanning curves. Notably, the proposed model outperforms the Scott and KP models in terms of model accuracy. Moreover, the novel model eliminates the pumping effect and has perfect closure at scanning curve reversal points.
There are two numerical schemes adopted to this research: finite difference method and finite element method. These models combined present hysteresis model to estimate scanning curves. In the research, there are two different forms of Richards equation: h-based and mix form. The results showed that the mix-form of Richards equation has had better mass balance; therefore, the simulation is based on the mix-form of Richards equation. Importance of hysteresis is based on that the numerical scheme is verified by the Gillham’s (1979) experimental data. Finally, three numerical schemes are adopted to three case studies to analyze hysteretic phenomena. The results of numerical analysis are helpful to understand the insight physical behavior of hysteresis.

謝誌 I
摘要 III
英文摘要 IV
目錄 V
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究方法與步驟 3
1.3 研究架構 5
第二章 相關理論與文獻回顧 7
2.1 基本概念 7
2.1.1 孔隙率(Porosity) 7
2.1.2 土壤含水量(Soil moisture) 8
2.1.3 毛細力(Capillarity) 8
2.2 土壤水力特性曲線、遲滯現象及相關文獻 9
2.2.1 土壤水力特性曲線模式及相關文獻 9
2.2.2 土壤水分遲滯現象與相關文獻 16
2.3 未飽和土壤水分傳輸 21
2.3.1 Darcy-Buckingham方程式 21
2.3.2 控制方程式(Richards equation) 23
第三章 土壤水分遲滯模式之建立 25
3.1 土壤水分遲滯曲線模式 26
3.2 未飽和水力傳導係數及比水容積遲滯曲線模式 32
3.2.1 未飽和水力傳導係數遲滯曲線模式 32
3.2.2 未飽和比水容積遲滯曲線模式 32
第四章 土壤水分遲滯模式之驗證 34
4.1 前人研究之第1乾燥曲線及第1濕潤曲線實驗與模式驗證 34
4.1.1 第1乾燥曲線及第1濕潤曲線之預測與討論 34
4.1.2 模式修正與討論 40
4.2 高階乾燥曲線及濕潤曲線實驗與模式驗證 43
4.2.1 實驗設置 43
4.2.2 實驗結果與模式驗證 50
4.3 土壤水分遲滯模式應用於數值模擬之原則 55
第五章 數值模式之建立 59
5.1 數值模式 59
5.1.1 一維有限差分法數值模式 60
5.1.2 一維有限元素法數值模式 63
5.1.3 多維有限元素法數值模式 67
5.2 數值模式之迭代求解及流程 69
5.2.1 一維數值模式之迭代求解 69
5.2.2 多維數值模式之迭代求解及流程 72
5.3土壤水分遲滯曲線模式之判斷與質量平衡 74
5.3.1 土壤水分遲滯曲線模式之解析 74
5.3.2 質量平衡 76
第六章 數值模式驗證與分析 77
6.1 土壤水分、張力混合型控制方程式與張力型控制方程式之比較 77
6.2 實驗結果之驗證 83
6.3 模式應用 88
6.3.1 模擬情形一 88
6.3.2 模擬情形二 101
6.3.3 模擬情形三 111
第七章 結論與建議 119
7.1 結論 119
7.2 建議 120
參考文獻 121
符號說明 127
簡歷 130

1.Assouline, S., Tessier, D., 1998, A conceptual model of the soil water retention curve. Water Resources. Research 34(3), 223-231.
2.Averianov S. F., 1949, Dependence of water conductivity of soils upon the air content. Proceedings of Academy of Sciences of USSR, 69(2), 141-145.
3.Bomba, S.I., Miller, E.E., 1967, Secondary scan hysteresis in glass-bead media. Paper presented at Annual Meeting, Soil Sci.Soc.of Amer.
4.Brooks R. H., Corey A. T., 1964, Properties of porous media affecting fluid flow, J.Irrig. Drain. Div. Am. Soc. Civ. Eng., 92(IR2), 61-88.
5.Brutsaert W., 1966, Probability laws for pore size distribution, Soil Sci., 101, 85-92.
6.Buckingham E., 1907, Contribution to our knowledge of the aeration of soils, Bull. 25.U. S. Dept. of Agr. Bureau of Soils, Washington, D. C.
7.Burdine N. T., 1953, Relative permeability calculations from pore size distribution data, Trans. Am. Inst. Univ. Metall. Pet. Eng., 198, 71-87.
8.Campbell G. S., Shiozawa S., 1992, Prediction of hydraulic properties of soils using particle size distribution and bulk density data”, in International workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Univ. of Calif. Press, Berkeley.
9.Carsel R. F., Parrish R. S., 1988, Developing joint probability distributions of soil water retention characteristics, Water Resources Research, 24(5), 755-769.
10.Celia, M.A., Bouloutas, E.T., Zarba, R.L., 1990, A general mass-conservation numerical solution for unsaturated flow equation, Water resource research, 26, 1483- 1496.
11.Collis-George N., Yates, D.B., 1950, The first stage of drainage from ponded soils with encapsulated air, Soil Sci., 149, 103-111.
12.Gardner W.R., 1958, Some steady state solutions of the unsaturated moisture flow equation with applications to evaporation from a water table” Soil Sci., 85, 228-232.
13.Gardner W.R., Mayhugh M. S., 1958, Solution and tests of the diffusion equation for the movement of water in soil, Soil Sci. Am. Proc., 22, 197-201.
14.Gillhan, R.W., Klute, A., Heermann, D.F., 1976, Hydraulic properties of a porous medium: Measurement and empirical representation, Soil Sci.Soc.Am.J, 40, 203-207.
15.Gillham, R.W., Klute, A., Heermann, D.F., 1979, Measurement and numerical simulation of hysteretic flow in a heterogeneous porous medium, Soil Sci. Soc. Am. J., 43, 1061-1067.
16.Hillel, D., Krentos, V.D., Stylianou, Y., 1972, Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ, Soil Science, 114(5), 395-400.
17.Ibrahim, H.L., Brutsaert, W., 1968, Intermittent infiltration into soils with hysteresis, J.Hydraul.Div.ASCE.94,265-271.
18.Jaynes, D.B., 1984, Comparision of soil-water hysteresis models, J.Hydra,75, 287-299.
19.Kool, J.B., Parker, J.B., 1987, Development and evaluation of close-form expressions for hysteresis soil hydraulic properties”, Water Resources Research, .23,105-114.
20.Kosugi K., 1994, Three-parameter lognormal distribution model for soil water retention, Water Resources Research, 30, 891-901.
21.Kutilek M., 1994, Some theoretical and practical aspects of infiltration in clays with D const. In: J. Bouma and P.A.C. Raats (Eds.): Water and Solute Movement in Heavy clay Soils, Proceedings of the ISSS Symposium on Water and Solute Movement in Heavy Clay Soils, International Institute for land Reclamation and Improvement (ILRI), Publication 37, Wageningen, 114-128..
22.Laiberte G. E.,1969, A mathematical function for simulation of random fields using line generation by a spectral method, Water Resources Research,18(5), 131-149.
23.Leibenzon L. S., 1947, Flow of natural liquids and gases in porous medium, Gostekhizdat, Moscow.
24.McCuen R. H., Rawls W. J., Brakensiek D. L., 1981, Statistical analysis of the Brooks-Corey and Green-Ampt parameters across soil textures, Water Resources Research, 17(4), 1005-1013.
25.Mualem, Y.,1974, A conceptual model of hysteresis, Water Resources Research, 10(3),514-520.
26.Mualem, Y., Dagan, G.,1975, A dependent domain of capillary hysteresis,Water Resources Research,11(3),452-460.
27.Mualem, Y.,1976, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, 12(3), 513-522.
28.Parlange, J.Y.,1976, Capillary hysteresis and the relationship between drying and wetting curves, Water Resources Research,12(2),224-248.
29.Pickens, J.P., Gillham, R.W.,1980, Finite element analysis of solute transport under hysteresis unsaturated flow condition, Water Resources Research,16, 1071-1078.
30.Pullan, A.,1990, The quasilinear approximation for unsaturated porous media flow, Water Resources Research,26, 1219-1234.
31.Poulvassilis, 1967, Hysteresis of pore water, an application on the concept of independent domain, Soil Sci., 93, 405-412.
32.Richards L. A.,1931, Capillary conduction of liquids through porous medium, Physics,1, 318-333.
33.Russo D.,1988, Determining soil hydraulic properties by parameter estimation on the selection of a model for the hydraulic properties, Water Resources Research, 24(3), 453-459.
34.Russo D., Bouton M.,1992, Statistical analysis of spatial variability in unsaturated flow parameters, Water Resources Research, 28(7), 1911-1925.
35.Russo D. Bresler E.,1980, Field determinations of soil hydraulic properties for statistical analysis, Soil Sci. Soc. Am. J., 44, 682-687.
36.Stauffer F., Franke H. J., Dracos T.,1992, Hysteretic storativity concept for aquifer simulation, Water Resources Research,28(9), 2307-2314.
37.Scott, P. S., Farquhar,G.J., Kouwen, N.,1983, Hysteresis effects on net infiltration, Advances in infiltration, ASAE Publ.11-83, 163- 170, Am. Soc. Agric. Eng., St. Joseph, Mich.
38.Topp, G.C, 1969,Soil water hysteresis measured in a sandy loam compared with the domain model, Soil Sci. Amer. Proc, 33,645-651.
39.Topp, G.C, 1971,Soil water hysteresis measured in a silt loam and clay loam soils, Water Resources Research, 7,914-920.
40.Tani M., 1982, The properties of a water-table rise produced by a one-dimensional, vertical, unsaturated flow (in Japanese with English summary)”, J. Jpn. For. Soc., 64,409-418.
41.Tyler S. W., Wheatcraft S. W.,1989, Fractal processes in soil water retention”, Water Resources Research, 26(5), 2227-2243.
42.van Genuchten M. T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soil”, Soil Sci. Am. J., 44, 892-898.
43.Wind G. P.,1955, A field experiment concerning capillary rise of moisture in a heavy clay soil, Neth. J. Agr. Sci., 3, 60-69.
44.Yaping Liu., Parlange,J.Y., 1995, Asoil water hysteresis model for fingered flow data, Water Resources Research,31(9),2263-2267.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔