(3.236.118.225) 您好!臺灣時間:2021/05/16 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高宏名
研究生(外文):Hong-Ming Kao
論文名稱:以三維度微粒軌跡追蹤模式研析多區間建築物室內懸浮微粒傳輸行為
論文名稱(外文):Investigation of Particulate Matter Transport Behavior in Multi-Room Buildings by Three-Dimensional Particle Tracking Technique
指導教授:張倉榮張倉榮引用關係
指導教授(外文):Tsang-Jung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:多區間建築物大渦漩模擬微粒軌跡微粒排除效率空氣交換率
外文關鍵詞:Particle trajectoryParticle removal efficiency
相關次數:
  • 被引用被引用:4
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的在以拉格蘭日(Lagrangian)觀點之氣懸微粒軌跡追蹤模式進行三維度多區間建築物室內微粒軌跡傳輸行為之境況模擬。微粒軌跡追蹤模式搭配以尤拉(Eulerian)觀點所進行之三維度室內環境風場模擬,引入大渦漩模擬(Large Eddy Simulations,LES)為紊流模式,以計算紊流場對微粒傳輸行為之影響。在研究中,微粒軌跡追蹤模式在計算微粒受力之時,除了傳統採用的阻力與重力外,又增加考慮Saffman升力與布朗運動作用力對於微粒的影響。本研究首先進行微粒釋放粒數之敏感度分析,分析結果當微粒釋放粒數超過O(103)數目層次以上時,可確保氣懸微粒質量濃度與粒數濃度之精確度。
本研究所發展之微粒軌跡追蹤模式並與Lu等(1996)現地試驗數據進行相互驗證,其在微粒質量濃度的模擬方面有著良好的吻合性。本研究繼而應用四種不同自然通風策略,包括全開通風、貫穿通風、右側短路通風和左側短路通風等,以瞭解三維度多區間建築物在不同通風策略下的室內懸浮微粒之傳輸行為與排除效率。研究中亦加入兩組對照組進行,分別是無室內隔間與不同空氣交換率對氣懸微粒傳輸行為之比較。
在比較以上四種不同的自然通風策略後,結果指出在微粒追蹤10分鐘後,懸浮於室內之PM10濃度於全開通風策略為最低,右側短路通風次之,再次之為貫穿通風,而左側短路通風由於受到室內隔間的不良配置影響,成為排除室內微粒效率最差者。但針對PM2.5或是PM1的微粒,採用以上各案例中的自然通風策略,對排除PM2.5的微粒之效果皆為普通,至於PM1微粒在室內的排除效率則都不佳,所以採取自然通風對小微粒的排除效能並不顯著。在有無隔間的案例比較下,本研究發現室內微粒沉積現象是兩者間較為明顯的差異處,於室內有隔間的情形下,其沉積比例較室內無隔間者多了近1.75倍之多。至於在不同空氣交換率下的比較中可指出,空氣交換率小(ACH=1 1/h)的室內空間與空氣交換率大者(ACH=5 1/h ),對於室內微粒質量濃度排除到相同濃度時,所需的時間呈非線性增加之趨勢。


The main objective of this study is to investigate particulate matter transport behavior in three-dimensional multi-room buildings by using a Lagrangian particle trajectory tracking technique. The wind flow model uses the Eulerian viewpoint to simulate indoor airflow and conducts the large eddy simulations (LES) of turbulent flows. In this study, we not only add the drag force and the gravitational force into the Lagrangian particle tracking model, but also consider the Brownian motion effect and saffman lift force on indoor aerosol particles. Sensitive analysis of how many particle numbers are needed to release in the simulated 3-D multi-room buildings is firstly performed. The result indicates that as the released particle numbers are over O(103), mass and count concentrations generally approach to steady values.
The Lagrangian particle tracking model developed herein is verified by Lu’s available field measurement in 1996. Good agreement with the measured particle mass concentration is found. Four sets of numerical scenario simulation for various window openness strategies are next carried out. The natural ventilation strategies used include full-open ventilation, pass-through (piston) ventilation, right short-cut ventilation, and left short-cut ventilation. In addition, two comparison sets which have no indoor partition and different air change rate, respectively, are also simulated.
In comparison with the effect of the four aforementioned natural ventilation strategies on removal efficiency of PM10 mass concentration in multi-room building, the results show that the removal efficiency of the full-open ventilation is the best and the left short-cut ventilation is the worst after ten-minute particle tracking. Obviously, the full-open ventilation is an effective way to remove indoor concentration of aerosol particles. The left short-cut ventilation has improper indoor partition arrangement, so that it has the worst removal ability. On the contrary, regarding to PM2.5 or PM1, there is no distinct difference in removing indoor particles for all natural ventilation strategies.
Comparing the cases that have indoor partition and without indoor partition, it can be seen that there exists obvious difference in particle deposition amounts. The deposition amounts of the with-partition case is almost 1.75 times as large as the without-partition case. Furthermore, for different air change rates, good removal ability of indoor particles is expected as an indoor space has higher air change rate.


摘 要 I
ABSTRACT III
目 錄 V
圖 目 錄 VII
表 目 錄 IX
第一章、緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
1.4前人研究 4
第二章、三維度多區間建築物環境風場模式與微粒軌跡追蹤模式 7
2.1三維度多區間建築物室內環境風場模式 7
2.1.1環境風場控制方程式 7
2.1.2紊流模式介紹 8
2.1.3數值方法 11
2.2三維度微粒軌跡追蹤模式 12
2.2.1三維度拉格蘭日微粒追蹤模式 12
2.2.2微粒追蹤之基本假設 15
2.2.3微粒運動之起始與邊界條件 16
2.2.4數值方法 17
2.3與對流擴散方程式之優劣比較 17
第三章、模式驗證 21
3.1 三維度拉格蘭日微粒追蹤模式驗證 21
3.2 布朗運動驗證 22
第四章、應用研究案例 29
4.1三維度多區間建築物之研究案例 29
4.2三維度多區間建築物之室內環境風場流況 30
4.3三維度多區間建築物之室內微粒場 32
4.3.1微粒質量濃度之計算 33
4.3.2釋放微粒數之敏感度分析 34
第五章 結果與討論 46
5.1不同通風策略對懸浮微粒傳輸之比較 46
5.1.1微粒質量濃度PM10之排除效率比較 47
5.1.2微粒質量濃度PM1與PM2.5之排除效率比較 49
5.1.3微粒的懸浮,沉積與流出之比較 50
5.1.4各案例之室內氣懸微粒排除效率比較 51
5.2建築物內部隔間對懸浮微粒傳輸行為之影響 53
5.3不同空氣交換率對懸浮微粒傳輸之比較 55
第六章、結論與建議 67
6.1結論 67
6.2建議 69
參考文獻 70



1.Adams, E.W. and Rodi, W., 1990, Modeling flow and mixing in sedimentation tanks, Member, J. of Hydraulic Engineering, ASCE, 895-913.
2.Ahmadi, G. and Li, A. ,2000, Computer simulation of particle transport and deposition near a small isolated building, J. of Wind Engineering and Industrial Aerodynamics, 84, 23-46.
3.American Thoracic Society, 1990, Environmental controls and lung disease, AM. Rev. Respia. Dis., 142-915.
4.Anderson, D.A., Tannehill, J.C. and Pletcher, R.H., 1984, Computational fluid mechanics and heat transfer, McGraw Hill, New York.
5.Chang, T.J., and Yen, B.C., 1998, Gravitational fall velocity of sphere in viscous fluid, J. of Engineering Mech., ASCE, 124(11), 1193-1199.
6.Chang, T.J., 2002, Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building, J. Air & Waste Manage. Assoc., 52, 1043-1053.
7.Chang, T.J., Huang, M.Y., Wu, Y.T. and Liao, C.M., 2003, Quantitative Prediction of Traffic Pollutant Transmission into Buildings, Journal of Environmental Science and Health Part A, A38(6), 1025-1040.
8.Chang, T.J., and Wu, Y.T., 2003, Wind-Driven Rain Trajectories around Street Canopies, Journal of the American Water Resources Association, 39(3), 545-562.
9.Chung, KC., Chiang, C.M. and Wang, W.A., 1997, Predicting containment particle distributions to evaluate the environment of lavatory with floor exhaust ventilation, Build and Environment, 32, 149-159.
10.Clift, R., Grace, J.R., and Weber, M.E., 1978, Bubbles, drops, and particles, Academic Press, New York.
11.Cox, S.J., Salt, D.W., Lee, B.E. and Ford, M.G., 2000, A model for the capture of aerially sprayed pesticide by barley, Journal of Wind Engineering and Industrial Aerodynamics, 87, 217-230.
12.Deardorff, J.W., 1970, A numerical study of three-dimensional turbulent channel ow at large Reynolds numbers, J. Fluid Mech., 41, 453–480.
13.Dockery, D.W., and Spengler, J.D., 1981a, Indoor-outdoor relationships of respirable sulfates and particles, Atmos. Environ., 15, 335-343.
14.Dockery, D.W., and Spengler J.D., 1981b, Personal exposure to respirable particulates and sulfates, J. Air Pollution Control Association, 31, 153-159.
15.Hinds, W.C., 1999, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, N.Y.
16.Honey, L.F., and McQuitty, J.B., 1979. Some physical factors affecting dust concentrations in pig facility. Can. Agric. Eng., 21, 9-14.
17.Lanchenmyer, C. and Hidy G.M., 2000, Urban measurements of outdoor-indoor PM2.5 concentrations and personal exposure in the deep south. Part I pilot study of mass concentrations for nonsmoking subjects, Aerosol Sci. and Technol., 32, 34-51.
18.Lebowitz, M.D., Corman, G., Rourke O. and Holberg C.J., 1984, Indoor-Outdoor air pollution, allergen and metrological monitoring in an Arid Southwest area, J. Air Pollution Control Association, 34, 1036-1038.
19.Li, A. and Ahmadi, G., 1992, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, J. Aerosol. Sci. Tech., 16, 209-226.
20.Lu, S.Y., 1996, Narrowest particle size distributions in aerosol processes, J. Chin. Inst. Chem. Eng., 27, 71-78.
21.Lu, W., Howarth, A.T., Adam, N., and Riffat S.B., 1996, Modeling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber, Building and Environment, 31(5), 417-423.
22.Panton, R.L., 1984, Incompressible Flow, A Wiley-Interscience publication.
23.Rao, S.S., 2002, Applied numerical methods for engineers and scientists, Prentice Hall, New Jersey.
24.Repace, J.L., 1982, Proceeding of indoor air pollution, Environ. Int., 8, 21-36.
25.Rodi, W., 1997, Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Eng. Ind. Aero., 69-71, 55-75.
26.Smagorinsky, J., 1963, General circulation experiments with the primitive equations I, The basic experiment, Mon. Weather Rev., 91, 99–164.
27.Wallace, L., and Howard-Reed, C., 2002, Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999-2000. J. Air Waste Manage. Association, 52, 828-844.
28.Zhang, W., and Chen, Q., 2000, Large eddy simulation of indoor airow with a ltered dynamic subgrid scale model, Int. J. Heat Mass Transfer, 43, 3219–3231.
29.Zhao, B., Zhang, Y., Li, X., Yang, X., and Huang, D., 2004, Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method, Building and Environment, 39, 1-8.
30.環保署,2002,「空氣污染物濃度測值會總匯報」。 http://www.epa.gov.tw/
31.張倉榮,郭鴻興,2001,「以計算流體動力學分析自然通風低層建築物之通風特性」,農業工程學報,第47卷,第4期,56-66。
32.張倉榮,郭鴻興,吳毓庭,2001,「低層建築物室內通風效率之數值研究」 九十年度農業工程研討會,台北市,第203-210頁,2001年12月。
33.黃俊強,2001,「低層建築物環境風場與風載之數值研究」,國立台灣大學農業工程學研究所碩士論文。
34.郭鴻興,2001,「以計算流體動力學分析自然通風低層建築物之通風特性」,國立台灣大學農業工程學研究所碩士論文。
35.黃美玉,2002,「通風空間中室內氣懸街塵移除動態行為」,國立台灣大學生物環境系統工程學研究所博士論文。
36.游家信,2002,「自然通風空間空氣交換有效性與氣狀污染物排除效率之數值研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
37.陳介文,2003,「生物環境中不同粒徑顆粒物質室內/室外/人體暴露之關聯性」,國立台灣大學生物環境系統工程學研究所博士論文。
38.李朝順,2003,「多區間建築物室內外氣流場與氣狀污染物傳輸之研究來探討氣懸固體微粒的運動行為」,國立台灣大學生物環境系統工程學研究所碩士論文。
39.吳毓庭,2003,「紊流大渦模擬在二維與三維設施環境問題之研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
40.林亭儀,2003,「環境氣懸微粒在人體呼吸系統沉積之數值模擬」,國立台灣大學生物環境系統工程學研究所碩士論文。
41.謝怡芳,2004,「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top