(3.238.96.184) 您好!臺灣時間:2021/05/18 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝怡芳
研究生(外文):Yi-Fang Hsieh
論文名稱:三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究
論文名稱(外文):Applications of Three-Dimensional Large-Eddy Simulations on Indoor Airflow Field of Multi-Room Buildings
指導教授:張倉榮張倉榮引用關係
指導教授(外文):Tsang-Jung Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:計算流體力學多區間建築物環境風場有限體積法綠植栽(孔隙介質)大渦模擬紊流模式
外文關鍵詞:shelterbelts (porous media)Computational fluid dynamicsmulti-room building environmental flow fieldlarge eddy simulationfinite volume method
相關次數:
  • 被引用被引用:11
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的為建立三維度多區間建築物環境風場紊流模式,以研析室內多區間三維度環境風場之時間平均流速、壓力及瞬時流速、壓力,以求能詳盡地分析具多重隔間複雜紊流場的流況。本研究採用有限體積法(finite volume method)離散控制方程式,以SIMPLE法耦合速度及壓力,使得整個流場符合質量守恆及動量守恆,再以大渦模擬(large eddy simulation,LES)紊流模式,結合亞格點尺度應力模式(subgrid scale stress model,SGS)來模擬紊流流場。
模式模擬結果首先透過與風洞試驗數據的比對,發現兩者相當吻合。本研究繼而針對台灣較為常見之三維度室內多區間案例,以不同通風策略進行模擬,窗戶開口開關方式分為全開通風、兩側通風、貫穿通風、交叉通風(型一及型二)及單側短路通風(型一及型二)等七種方式。同時亦針對室內無隔間案例作模擬,以進行室內無隔間案例與室內多區間案例之分析比較。模擬結果發現背風面區間換氣情況以貫穿通風案例為所有案例中之較佳情況,而室內區間通風情況直接受到其所屬之窗戶開口開關情況影響。
另一方面,綠植栽(孔隙介質)常被應用於降低風速、改善氣候及環境條件與增加作物產量等,因此本研究亦針對室內綠植栽(孔隙介質)對室內環境風場之影響進行探討,結果發現在研究案例中,綠植栽可有效的降低入流氣流25%之速度。


The main objective of this study is to develop a 3-D turbulent flow model for indoor multi-room environment. The 3-D turbulent flow model of an indoor multi-room building in this study can provide not only mean flow field but also instantaneous flow field. The results enable us to understand indoor turbulence which cannot be given by the mean flow field. We select the finite volume method to discretize the governing equations of our model. SIMPLE scheme is used to adjust flow field to satisfy the continuity equation. Large eddy simulation(LES) with subgrid-scale stress model(SGS) is adopted to model the turbulence flow field in the study.
The numerical model is firstly verified by the reliable experimental measurement. The numerical results are in good agreement with the experimental data. In our case study, a common multi-room style in Taiwan region has been selected to simulate the flow patterns for various ventilation strategies in multi-room buildings. Seven kinds of ventilation strategies are simulated, including full-open ventilation, side ventilation, pass-through (piston) ventilation, cross ventilation(typeⅠand typeⅡ) and short-cut ventilation(typeⅠand typeⅡ). It is found out that pass-through ventilation can provide the most effective way in the downward-side rooms. The openness of windows in the room is the key point of ventilation efficiency. In addition, shelterbelts (porous media) situated in front of windows are used to reduce wind speed. The flow patterns changed by shelterbelts are discussed. Results show that shelterbelts can decrease indoor air speeds effectively up to 25%.


摘 要 I
Abstract III
目 錄 V
表 目 錄 VII
圖 目 錄 VIII
第一章、緒論 1
1.1前言 1
1.2研究動機 2
1.3前人研究 3
第二章、數學模式 7
2.1環境風場基本控制方程式 7
2.2紊流模式介紹 8
2.2.1雷諾平均那維爾-史托克(RANS)模式 8
2.2.2大渦模擬(LES)紊流模式 9
2.3多區間三維環境風場紊流模式 10
2.3.1大渦模擬(LES)紊流模式 10
2.3.3亞格點應力模式 (subgrid-scale stress model,SGS) 12
2.3.4建築物含綠植栽(孔隙介質,porous media)三維環境風場模式 13
第三章、數值方法 15
3.1有限體積法的網格系統 15
3.2控制方程式的離散 16
3.3壓力修正方程式 18
3.4求解步驟 20
3.5邊界條件 20
3.6格網建立 21
第四章、模式驗證 25
4.1單區間三維環境風場模式驗證 25
4.2雙區間三維環境風場模式驗證 26
4.3建築物含綠植栽(孔隙介質)環境風場模式驗證 27
4.4小結 28
第五章、模式應用案例介紹及網格敏感度分析 37
5.1模式應用案例介紹 37
5.2網格敏感度分析(Grid Sensitivity Analysis) 38
第六章 模擬結果與討論 47
6.1開口通風量分析 47
6.2 室內無隔間與多區間建築物案例流況分析 49
6.3建築物空間環境風場指標 51
6.3.1無隔間窗戶開口全開案例及多區間全開通風案例之比較 52
6.3.2多區間案例之不同窗戶開口開關方式之比較 52
6.4建築物含綠植栽案例模擬結果 53
第七章 結論與建議 73
7.1結論 73
7.2建議 74
參考文獻 76



朱佳仁,2002。「環境流體力學」。
李朝順,2003。「多區間建築物室內外氣流場與氣狀污染物傳輸之研究來探討氣懸固體微粒的運動行為」,國立台灣大學生物環境系統工程學研究所碩士論文。
苗君易,2003。「流體力學知多少」,成大出版中心。
高宏名,2004。「以三維度微粒軌跡追蹤模式研析多區間建築物室內懸浮微粒傳輸行為」,國立台灣大學生物環境系統工程學研究所碩士論文。
張倉榮,郭鴻興,2001。「以計算流體動力學分析自然通風低層建築物之通風特性」,農業工程學報,第47卷,第4期,56-66。
張倉榮,游家信,謝怡芳,2001a。「建築物室內隔間對自然通風效率之影響評估」九十年度農業工程研討會,台北市,第131-138頁,2001年12月。
張倉榮,郭鴻興,吳毓庭,2001b。「低層建築物室內通風效率之數值研究」九十年度農業工程研討會,台北市,第203-210頁,2001年12月。
郭鴻興,2001。「以計算流體力學分析自然通風低層建築物之通風特性」,國立台灣大學農業工程學研究所碩士論文。
黃俊強,2001。「低層建築物環境風場與風載之數值研究」,國立台灣大學農業工程學研究所碩士論文。
游家信,2002。「自然通風空間空氣交換有效性與氣狀污染物排除效率之數值研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
Balaras, E., Benocci, C. and Piomelli, U., 1995. Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model. Theoretical and Computational Fluid Dynamics, 7:207-216.
Boulard, T., Lamrani, M. A., Roy, J. C., Jaffrin, A. and Bouirden, L., 1998. Natural ventilation by thermal effect in a one-half scale model mono-span greenhouse. Trans. ASAE, 41(3):773-781.
Boulard, T., Haxaire, R., Lamrani, M. A., Roy, J. C., and Jaffrin, A., 1999. Characterization and modeling of the air fluxes induced by natural ventilation in a Greenhouse. J. Agric. Eng. Res., 74:135-144.
Bradley, E.F. and Mulhearn, P.J., 1983. Development of velocity and shear stress distributions in the wake of a porous shelter fence. J. Wind Eng. Ind. Aerodyn., 15:145-156.
Chang, T.J., 2002. Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building. J. of the Air & Waste Management Association, 52:1163-1174.
Chang, T.J., Huang, M.Y., Wu, Y.T. and Liao, C.M., 2003. Quantitative prediction of traffic pollutant transmission into buildings. J. Environ. Sci. Health, A38(6): 999-1014.
Chang, T.J. and Wu, Y.T., 2003. Wind-driven rain trajectories around street canopies. Journal of the American Water Resources Association, 39(3):545-562.
Deardorff, J.W., 1970. A numerical study of three-dimensional turbulent channel ow at large Reynolds numbers. J. Fluid Mech., 41:453–480.
Dockery, D.W. and Spengler J.D., 1981a. Indoor-outdoor relationships of respirable sulfates and particles. Atmos. Environ., 15:335-343.
Dockery, D.W. and Spengler J.D., 1981b. Personal exposure to respirable particulates and sulfates. J. Air Pollution Control Association, 31:153-159.
Eimern, J., Karschon, R., Razumova, L.R. and Robertson, G.W., 1964. Windbreaks and shelterbelts. Technical Report 59, WMO.
Jiang, Yi. And Chen, Qingyan, 2001. Study of natural ventilation in buildings by large eddy simulation. J. of Wind Eng. and Ind. Aerodyn., 89: 1155-1178.
Hoerner, SF. 1965. Fluid Dynamic Drag. Libr. Congr. Catalog Card No. :64-19666.
Lanchenmyer, C. and Hidy G.M., 2000. Urban measurements of outdoor-indoor PM2.5 concentrations and personal exposure in the deep south. Part I pilot study of mass concentrations for nonsmoking subjects. Aerosol Sci. and Technol., 32:34-51.
Lebowitz, M.D., Corman, G., Rourke O. and Holberg C. J., 1984. Indoor-Outdoor air pollution, allergen and metrological monitoring in an Arid Southwest area. J. Air Pollution Control Association, 34: 1036-1038.
Lee , H. and Awbi , H.B., 2004. Effect of internal partitioning on indoor air quality of rooms with missing ventilation-basic study. Building and Environment, 39:127-141.
Nielsen,P.V., Restivo, A., Whitelaw, J.H., 1978. The velocity characteristics of ventilated room. J. Fluids Eng., 100:291-298.
Packwood, A.R., 2000. Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments. J. of Wind Engineering and Industrial Aerodynamics. 88: 75-90.
Patankar, S.V., 1980, Numerical heat transfer and fluid flow, Hemisphere Pub. Corp., London.
Posner , J.D., Buchanan , C.R. and Dunn-Rankin, D., 2003. Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35:515-526.
Panton, R.L., 1984.”Incompressible Flow”. A Wiley-Interscience publication.
Patton, E.G., and Shaw, R.H., 1998. Large-eddy simulation of windbreak flow. Boundary Layer Meteorology, 87:275-306.
Repace, J.L., 1982. Proceeding of indoor air pollution. Environ. Int., 8:21-36.
Rodi, W., 1997. Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Eng. Ind. Aero., 69-71, 55-75.
Smagorinsky, J., 1963. General circulation experiments with the primitive equations I. The basic experiment. Mon. Weather Rev., 91:99–164.
Taylor, P.A., 1970. A model of airflow above changes in surface heat flux, temperature and roughness for neutral and unstable conditions. Boundary Layer Meteorology, 1:18-39.
Wagner, G. J. and Liu, W. K., 2000. Turbulence simulation and multiple scale subgrid models. Computational Mech., 25:117-136.
Wang, H. and Takle, E.S., 1995. A numerical simulation of boundary-layer flows near shelterbelts. Boundary Layer Meteorology, 75:141-173.
Wang, H. and Takle, E.S., 1997. Momentum budget and shelter mechanism of boundary-layer flow near a shelterbelt. Boundary Layer Meteorology, 82:417-435.
Wang H., Takle ES., 2001. Shelterbelts and windbreaks: Mathematical modeling and computer simulations of turbulent flows. Annu. Rev. Fluid Mech., 33:549-586.
Wang, S. and Deltour, J., 1999. Leeside ventilation-induced air movement in a large scale multi-span greenhouse. J. Agric. Eng. Res., 74:103-110.
Wang, S., Boulard, T. and Haxaire, R., 1999a. Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agric. Forest Meteo., 96:181-188.
Wang, S., Yernaux, M. and Deltour, J., 1999b. A networked two-dimensional sonic anemometer system for the measurement of air velocity in greenhouses. J. Agric. Eng. Res., 73:189-197.
Wilson, J.D., 1985. Numerical studies of flow through a windbreak. J. of Wind Eng. and Ind. Aerodyn., 21:119-154.
Wilson, J.D., 1987. A second-order closure model for flow through vegetation. Boundary Layer Meteorology, 42:371-392.
Yocom, J.E., Clink, W.L., and Cote, W.A., 1971. Indoor/Outdoor air quality relationships. J. Air Pollution Control Association, 21:251-254.
Zhang, W. and Chen, Q., 2000. Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model. Int. J. Heat Mass Transfer, 43(17): 3219-3231.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top