(3.235.245.219) 您好！臺灣時間：2021/05/07 22:37

### 詳目顯示:::

:

• 被引用:2
• 點閱:223
• 評分:
• 下載:0
• 書目收藏:0
 渠道二維水深平均模式，一直是水力學上重要的課題。本文的主要目的為分析二維渠道中非旋流及超臨界流之流況，針對二維束縮段非旋流時，利用等勢能函數來計算矩形渠道收縮段之水深及流速分布。由於等勢能函數在二維渠道中可寫成Laplace的方程式，故在本文中利用Schwarz-Christoffel 轉換，來求解等勢能函數之Laplace方程式。將原來的水理參數化成等勢能函數及水深參數，利用等勢能函數之定義，可計算出二維矩形渠道收縮段之速度分布。　　在二維超臨界流束縮段方面，本文針對水平渠道，斜震波折角及最佳束縮段長度進行研究，其中斜震波折角與福祿數及束縮折角的關係也是本文研究的重點。研究發現斜震波折角為福祿數及束縮折角之函數關係，並利用統計的方式求出斜震波折角公式。另外，由斜震波理論出發，建立最佳束縮段長度關係圖，並提出最佳束縮段長度公式，利用福祿數及斷面束縮比直接求解，以代替試誤法之求解(Chow, 1959)。最後，利用數值試驗來驗証本文所提之最佳束縮段長度關係圖。
 The analysis of two-dimensional depth-averaged flows in open channel is of great importance in the hydraulics. The main purpose of this study is to find the solution of the two- dimension irrotational flow and supercritical flow in channel contractions. For irrotational flow, the potential function is used to compute the water depth and velocity distributions in constriction channel. The potential function in a two-dimension channel flow can be expressed as the form of Laplace equation. In this study, the Schwarz-Christoffel mapping is used to solve the Laplace equation. The hydraulic variables in the channel are reduced to two variables, the potential function and water depth. By using the definition of potential function, the velocity distribution in two-dimensional constriction channel is solved for. The oblique shock angles and the optimal transition length for channel contraction with supercritical flows in a horizontal channel are analyzed. The relationships between the shock angles, Froude number and contraction angles have been investigated. Because the shock angles are the function of the Froude number and contraction angle, the explicit shock angles function can be established by statistical method. In addition, a new optimal contraction diagram is developed based on the fundamental relationship between oblique shock waves and optimal contraction equations. The optimal contraction equations expressed in terms of the Froude number and contraction ratio are proposed, in stead of trial-and-error procedures (Chow, 1959) for the determination of the optimal contraction. Moreover, numerical simulations are also used to examine the validity of the new optimal contraction diagram.
 中文摘要 IAbstract II目錄 III圖錄 V表錄 VII符號表 VIII第一章 緒論 1 1.1　研究緣起 1 1.2 前人研究 1 1.3 研究目的及內容 5　　1.4 本文組織 5第二章 基本方程式 7 2.1 流體之動量及質量方程式 7　　　　2.1.1 質量守恆方程式 7　　　　2.1.2 動量守恆方程式 8 2.2 水深平均連續及動量方程式 9　　　　2.1.1 連續方程式 9　　　　2.1.2 動量方程式 10 2.3 非旋流方程式 13 2.4 超臨界流斜震波 15第三章 　二維束縮渠道等勢能流解析 20 3.1 Schwarz-Christoffel之轉換 20 3.2 等勢能函數轉換 25 3.3 等勢能函數之解 26 3.4 二維矩形渠道收縮段(constriction) 28第四章 　二維束縮段超臨界流解析 29 4.1 束縮段斜震波方程式 29 4.2 頸塞流況 32 4.3 束縮段斜震波折角理論 34 4.4 最佳束縮長度理論 37第五章 驗証與比較 41 5.1 非旋流解析之比較 41 5.2 二維非旋流矩形束縮渠道解析 43 5.3 二維矩形渠道收縮段等勢能函數 45 5.4 連續型二維矩形渠道非對稱收縮段等勢能函數 47 5.5 最佳束縮長度之驗証 48 5.6 二維超臨界流最佳束縮長度應用 50第六章 結論與建議 52 6.1 結論 52　　　　6.1.1 二維非旋流 52　　　　6.1.2 二維超臨界流 53 6.2 建議 54參考文獻 55附錄A 114簡歷 116學術著作 117
 1.Alcrudo, F., and Garcia-Navarro, P., 1993. A high-resoluction Godunovtype scheme in finite volumes for the 2D shallow-water equations, Int. J. for Numerical Methods in Fluids, 16, 489-505.2.Ambrosi, D., 1995. Approximation of shallow water equations by Roe’s Riemann slover, International Journal for Numerical Methods in Fluids, 20, 157-168.3.Anastasiou, K., and Chan, C. T., 1997. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, International Journal for Numerical Methods in Fluids, 24, 1225-1245.4.Anderson, J. D., 1976. Modern compressible flow with historical perspective, McGraw-Hill International Editions.5.Armstrong, D. Llanas, I., Russo, F., and Schmidt, J. R., 1998. Visualization of Electromagnetic fields using awk, Computers in Physics, 12(2), 159-165.6.Banjai, L. and Trefethen, L. N., 2003. A multipole method for schwarz-christoffel mapping of polygons with thousands of sides, SIAM, Journal of Scientific Computing, 25(3), 1042-1065.7.Batchelor, G. K., 1967. An introduction to fluid dynamics, Cambridge University Press, New York.8.Bhallamudi, S. M., and Chaudhry, M. H., 1992. Computation of flows in open-channel transitions, Journal of Hydraulic Research, 30(1), 77-93.9.Boutros, Y. Z., Malek, A. E., and Masoud, S. Z., 1987. Hilbert’s method for numerical solution of flow from a uniform channel over irregular bottom topographies, Computer methods in Applied Mechanics and Engineering, 65, 215-228.10.Causon, D. M., and Mingham, C. G. and Igram, D. M., 1999. Advances in calculation methods for supercritical flow in spillway channels, Journal of Hydraulic Engineering, 125(10), 1039-1050.11.Chen, C. L., and Su, M. Y., 1982. Schwarz-Christoffel theory of flow past an opening, Journal of Engineering Mechanics Division, 108(2), 399-418.12.Chen, D., and Jirka, G. H., 2001. Experimental study of plane turbulent wakes in a shallow water layer, Fluid Dynamics Research, 16, 11-41.13.Chow, V. T., 1969. Open-channel hydraulics, McGraw-Hill Book Co. Inc. New York.14.Chuang, J.M., Gui, Q. Y., and Hsiung, C. C., 1993. Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domain, Computer Methods Applied Mechanics and Engineering, 105, 93-109.15.Clark, D., 2001. Calculation of the added mass of elliptical cylinders in shallow water, Ocean Engineering, 28, 1361-1381.16.Clark, D., 2002. Calculation of the added mass of elliptical cylinders with vertical fins in shallow water, Ocean Engineering, 30, 1-22.17.Davis, R. T., 1979. Numerical methods for coordinate generation based on Schwarz-Christoffel transformation, in Proc. AIAA 4th Computational Fluid Dynamics Conf. Williamsburg, VA, 1-15.18.Dewynne, J. N., Howison, S. D., Ockendon, J. R., Morland, L. C., and Watson, E. J., 1989. Slot suction from inviscid channel flow, Journal of Fluid Mechanics, 200, 265-282.19.Driscoll, T. A., and Vavasis, S. A., 1998. Numerical conformal mapping using cross-ratios and delaunay triangulation, SIAM, Journal of Scientific Computing, 19, 1793-1803.20.Driscool, T. A., 1996. Algorithm 756:A Matlab toolbox for Schwarz-Christoffel mapping, ACM Transactions on Mathematical software, 22(2), 168-186.21.Fennema, R. J. and Chaudhry, M. H., 1991. Explicit method for 2-D transient free-surface flows, Journal of Hydraulic Engineering, ASEC, 116(8), 1011-1034.22.Fennema, R. J., and Chaudhry, M. H., 1986. Explicit numerical scheme for unsteady free-surface flows with shocks, Water Resources Research, 22(13), 1923-1930.23.Floryan, J. M., 1985. Conformal-mapping-based coordinate generation method for channel flows, Journal of Computational Physics, 58, 229-245.24.Floryan, J. M., 1986. Conformal-mapping-based generation method for flows in periodic configurations, Journal of Computational Physics, 62, 221-247.25.Floryan, J. M., and Zemach, C., 1987. Schwarz-Christoffel mappings: A general approach, Journal of Computational Physics, 72, 347-371.26.Hager, W. H., 1985. Hydraulic jump in non-prismatic rectangular channel, Journal of Hydraulic Research, 23(1), 21-35.27.Hager, W. H., 1987. Discharge characteristics of local discontinuous contractions, Journal of Hydraulic Research, 25(2), 197-214.28.Hager, W. H., and Altinakar, M. S., 1985. Infinitesimal cross-wave analysis, Journal of Hydraulic Engineering, 110(8), 1145-1150.29.Hager, W. H., and Dupraz, P. A., 1985. Discharge characteristics of local discontinuous contractions, Journal of Hydraulic Research, 23(5), 421-433.30.Hassenpflu, W. C., 1998. Branched channel free-streamlines, Computer methods in Applied Mechanics and Engineering, 159, 329-354.31.Henderson, F. M., 1966. Open channel flow, MacMillan.32.Hinze, J. O., 1959. Turbulence. McGraw-Hill Inc., New York, N.Y.33.Hsu, M. H., Teng, W. S. and Lai, C. T., 1998. Numerical simulation of supercritical shock wave in channel contraction, Computers and Fluids, 27(3). 347-365.34.Hureau, J., Brunon, E., and Legallais, Ph., 1996. Idel free streamline flow over a curved obstacle, Journal of Computational and Applied Mathematics, 72, 193-214.35.Ippen, A. T., 1951. Mechanics of supercritical flow, Transaction ASCE, 116, 268-295.36.Ippen, A. T., and Dawson, J. H., 1951. Design of channels contractions, Transaction ASCE, 116, 326-346.37.Iverson, R. M., 1997. The physics of debris flows, Reviews of Geophysics, paper number 97RG00426, 35(3), 245-296.38.Iverson, R. M., and Denlinger, R. P., 2001. Flow of variably fluidized granular masses across three-dimensional terrain, Journal of Geophysical Research, 106(b1), 537-552.39.Jimenez, O. F. and Chaudhry, M. H., 1988. Computation of Supercritical Free Surface Flows, Journal of Hydraulic Engineering, ASCE, 144(4), 377-395.40.King, A. C., and Bloor, M. I. G., 1987. Free-surface flow over a step, Journal of Fluid Mech, 182, 193-208.41.Klonidis, A. J., and Soulis, J. V., 2002. An implicit scheme for steady two-dimensional free-surface flow calculation, Journal of Hydraulic Research, 39(4), 393-402.42.Kuipers, J., and Vreugdenhill, C. B., 1973. Calculations of two-dimensional horizontal flow, Rep. S163. Part I, Delft Hydraulics Lab. Delft, The Netherlands.43.Lai, C., 1994. Multicomponent-flow analyses by multimode method of characteristics, Journal of Hydraulic Engineering, ASCE, 120(3), 77-93.44.Lee, J. K., 1984. Potential flow through channel constriction, Journal of Engineering Mechanics Division, 110(4), 515-520.45.Malek, M. B., 1994. Flow in a waterfall with large Froude number, Journal of Computational and Applied Mathematics, 50, 87-98.46.Molinas, A., and Marcus, K. B., 1998. Choking in water supply structures and natural channels, Journal of Hydraulic Research, 36(4), 675-694.47.Molls, T., and Chaudhry, M. H., 1995. Depth-average open-channel flow model, Journal of Hydraulic Engineering, ASCE, 121(6), 453-465.48.Montes, J. S., 1992. Potential-flow solution to 2D transition from mild to steep slope, Journal of Hydraulic Engineering, 120(5), 601-621.49.Nachbin, A., 2003. A terrain-following boussinesq system, Society for Industrial and Applied Mathematics, 63(3), 905-922.50.Panagiotopoulos, A. G., and Soulis, J. V., 2000. Implicit bidlagonal scheme for depth-average free-surface flow equation, Journal of Hydraulic Engineering, 126(6), 425-436.51.Pearce, K., 1991. A constructive method for numerically computing conformal mappings for gearlike domains, SIAM, Journal of Scientific Computing, 12, 231-246.52.Ponce, V. M., and Yabusaki, S. B., 1981. Modeling circulation in depth-averaged flow, Journal of Hydraulic Division, 107(11), 1501-1518.53.Rahman, M., and Chaudhry, M. H., 1997. Computation of Flows in Open-Channel Transitions, Journal of Hydraulic Research, 35(2), 243-255.54.Rajaratam, N., and Nwachukwu, B., 1983. Flow near groyne-like structures, Jounral of Hydraulic Division, 109(3), 463-480.55.Rodi, W., 1984. Turbulence models and their applications in hydraulics, IAHR, Publications, Delft, The Netherlands.56.Sanders, B. F., and Pau, J. C., 2003. Parallel implementation of an explicit finite-volume shallow water model, 16th ASCE Engineering Mechanics Conference.57.Schuttelaars, H. M., and Swart, H. E., 2000. Multiple morphodynamics equilibria intidal embayments, Journal of Geophysical Research, 118, 105-24.58.Shankar, N. J., Chan, E. S., and Zhang, Q. Y., 2001. Three-dimensional numerical simulation for an open channel flow with a constriction, Journal of Hydraulic Research, 39(2), 187-201.59.Sridhar, K. P., and Davis, R. T., 1985. A Schwarz-Christoffel method for generating two dimensional flow grids, Journal of Fluids Engineering, 107, 330-337.60.Sturm, T. W., 1985. Simplified Design of Contractions in Supercritical Flow, Journal of Hydraulic Engineering, ASCE, 111(5), 871-892.61.Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997. Computational fluid mechanics and heat transfer, Second, Edition, Taylor and Francis Publishers.62.Tingsanchali, T., and Maheswaran, S., 1990. 2-D depth-average flow computation near groyne, Journal of Hydraulic Engineering, ASCE, 116(1), 71-86.63.Trefethen, L. N., 1986. Numerical conformal mapping. Amsterdan; North Hollad.64.Trevelyan, P.M.J., Elliott, L., and Ingham, D. B., 2000. Potential flow in a semi-infinite channel with multiple sub-channels using the Schwarz-Christoffel transformation, Computer Methods Applied Mechanics and Engineering. 189, 341-359.65.Vreugdenhill, C. B., and Wijbenga, J., 1982. Computation of flow patterns in rivers, Journal of Hydraulic Division, 108(11), 1296-1310.66.Wesseling. P, Vuik, C., Mynett, A. E., and Mooiman, I. J., 2002. Numerical accuracy in solutions of the shallow water equations, Preliminary Report, Peterjan Broomans Delft.67.Yasuda, Y., and Hager, W. H., 1995. Hydraulic jump in channel contraction, Canadian Journal of Civil Engineering, 22, 925-933.68.Yulistiyanto, B., Zech, Y., and Graf, W. H., 1998. Flow around a cylinder: shallow-water modeling with diffusion-dispersion, Journal of Hydraulic Engineering, ASCE, 124(4), 1998.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用FLOW-3D模擬斜坡矩形束縮渠道之斜震波研究 2 以界面捕捉法模擬三維斜水躍問題

 1 陳英豪、何華國和吳昆壽(1991)。美勞科創造思考教學方案對國小普通班兒童創造思考能力及美勞科成績之影響。特殊教育與復健學報，2， 181-204 。 2 孫志麟(1992)。教師思考研究之探討。教育研究，27，24-29 頁。 3 鄭湧涇(1987)。科學的才能。創造思考教育，2，1-6，台北市立師範學院出版。 4 簡紅珠(1998)。教師教學決定：內涵、思考歷程與影響因素－兼談如何改進教學決定技能。課程與教學，1（4），43-56。 5 鄭湧涇(1987)。適合高中科學才賦優異學生的教學方案。資優教育季刊， 6 翁秀玉、段曉林(1997)。科學本質在科學教育上的啟示與作法。科學教育 7 洪振方(1998)。科學創造力之探討。高雄師大學報，9， 289-302。 8 洪文東(1997)。創造性思考與科學創造力的培養。國教天地，123，10-14。 9 邱珍琬(2001)。創意教學-理論與想法。國民教育研究，5，1-7。 10 李賢哲(2001)。以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育月刊，243，2-7。 11 江新合、唐偉成(1999)。開發科學創造力之教學策略研究-應用於國小自然科。科學與教育學報，3，53-77。 12 江新合、唐偉成(1999)。開發科學創造力的V-Map教學策略實徵研究。科學教育學刊，7(4)，367-392。

 1 超臨界流渠道束縮段之水理分析 2 以界面捕捉法模擬三維斜水躍問題 3 近床二維有序流結構對非均勻砂礫啟動之影響 4 電雙層於微流道旁通過渡流之效應 5 專利對農業生物科技廠商生產技術效率及市場價值之影響 6 動態系統與類神經網路之研究及其應用於降雨–逕流預報模式之整合 7 三維雷射追蹤球桿系統之研製與串並聯工具機之誤差分析 8 蕎麥農藝特性及芸香苷含量變異之研究 9 相思樹心材具抗氧化及抗發炎成分之分析與鑑定 10 波流場中波浪變形之研究 11 銘印、協商與抵抗的空間實踐--由康樂里非自願拆遷重思都市規劃與建築歷史 12 應用於低溫共燒之氧化鑭/氧化鋁/氧化硼基玻璃陶瓷複材製程及特性分析 13 束縮段渠道超臨界流水理分析 14 介相瀝青粉石墨化製程改善研究 15 鎂.鋁.鈦部分取代對磷酸鋰鐵正極材料的結構與電化學特性的影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室