(3.80.6.131) 您好!臺灣時間:2021/05/14 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林高弘
研究生(外文):Kao-Hung Lin
論文名稱:台灣西南沿海地區養殖生態系統物種砷之時空分布及生物累積
論文名稱(外文):Spatiotemporal Distribution and Bioaccumulation of Arsenic Species in the Aquacultural Ecosystem in the Coastal Areas of Southwestern Taiwan
指導教授:劉振宇劉振宇引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:231
中文關鍵詞:吳郭魚養殖生態系統烏腳病地區砷物種牡蠣烏魚文蛤生物累積
外文關鍵詞:oysterclambioaccumulationtilapiaaquacultural ecosystemmugilblackfoot disease areaArsenic species
相關次數:
  • 被引用被引用:3
  • 點閱點閱:428
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以台灣西南部養殖魚貝為對象,調查養殖生態系統中牡蠣、烏魚、文蛤及吳郭魚在不同生長環境下物種砷累積分布。並根據組織器官中物種砷之累積含量,推測4種魚貝類砷累積途徑。研究區域以含有高砷地下水之烏腳病盛行區及西南沿海地區為主,調查種類包含水質(地下水、養殖池及海水)、生物體(軟體組織、魚肉、魚卵等)及池底沈積物。分析項目則為總砷、As(III)、As(V)、DMA及MMA。在水質調查方面烏腳病地區60個養殖池水總砷平均濃度為63.9�b55.5 �慊/L,其中有28池總砷含量超過環保署所訂定的養殖用水標準50 �慊/L,不合格率為46%。比較烏腳病地區與雲林口湖鄉之地下水質,兩處含高砷之地下水存在於不同深度之地層但地質年代相近。至於長達1年的牡蠣含砷量監測,不分地區總砷平均含量為9.85�b3.7 �慊/g(乾重),無機砷則為0.12�b0.12 �慊/g(乾重),地區以布袋濃度最高,分布最廣,此結果受到當地含高砷地下水或養殖池水排放之影響,海域上內海養殖砷含量顯著高於外海,季節上則以秋季生產牡蠣砷濃度最高,在層析訊號分析上部分牡蠣樣品有未知吸收峰出現,經與其他研究比對確定為AsS(PO4)。烏魚的調查主要包含4處可食器官,以養殖雄烏魚胃之無機砷含量最高達0.83 �慊/g(乾重),這與烏魚習性攝食底層含高砷沈積物有關。生長於低砷濃度海水之海生烏魚除魚胃外其他組織器官砷含量都高於養殖烏魚。小體型之文蛤比中體型更能累積砷,小體型文蛤無機砷含量高達1.31 �慊/g(乾重)是所有分析生物中無機砷濃度最高,不分體型文蛤冬季(12月)高於春季(3月)與牡蠣相似。在吳郭魚組織器官分析上,總砷含量依序為魚鱗�捂z�鬼G�凰��挾Э��扇念f�恕萲��悄x臟�悌I鰭肉,消化道之腸胃與呼吸器官鰓都是砷進入魚體之門戶,砷含量的累積是可預期。含高砷之魚磷則因容易取得且價錢便宜適合做為水體環境監測之用。根據4種水產魚貝類無機砷的檢驗結果,牡蠣、養殖烏魚胃、文蛤及吳郭魚肉在百萬分一風險下5�s至95�s信賴區間,每日安全攝食量分別為1.7克至27克、0.1克至1.1克、0.2克至6.1克及1.7克至34克。依國內生產量可推算出國人食用吳郭魚肉每人每日為1.6克,低於本研究對砷所建議90%信賴區間每日安全攝食量之下界,因此國人在食用吳郭魚應是安全無慮。如以食入1.6克吳郭魚肉為標準,結合健康風險與吳郭魚池水與魚體總砷分布之線性迴歸式,可反推得養殖池水總砷濃度為145 �慊/L,據此養殖用水砷含量標準有重新檢討之必要,以減輕漁民困擾與負擔。
本研究分析養殖魚貝類砷物種之含量及可能累積來源,對瞭解台灣地區養殖生態系統砷物種之分布獲得具體之成果,並且對國人食用沿海及養殖魚貝類所可能產生之健康風險提供相關明確之資訊。


Abstract
This study analyzed the spatiotemporal distribution and bioaccumulation of arsenic (As) species in the aquacultural ecosystem for different aquacultural conditions in the coast of southwestern, Taiwan. The analyzed aquacultural fishes and shellfishes included tilapia, oyster (Crassostred gigas), mugil (Mugil cephalus) and clam (Meretrix lusoria). The bioaccumulation paths were investigated according to the As species contents in different tissues of four aquacultural fishes and shellfishes. The study area focused on the blackfoot disease and coastal areas where groundwater contains high As. The analyzed components of the aquacultural ecosystem contained the As species concentrations in groundwater, aquacultural ponds and sea, in biological tissues (including soft organ, muscle, ovary etc.) of the fishes and shellfishes, and in pond sediments. The analyzed As species included total As, arsenate As(Ⅴ)and arsenite As(Ⅲ), monomethylarsonic acid(MMA), and dimethylarsinic acid(DMA).
The As concentrations of the aquacultural ponds positively correlate with those used groundwater (R=0.51, p<0.01) in the study areas, while the correlation in the aquacultural ponds of tilapia (R=0.73, p<0.01) is the highest among the others. The dating of groundwater of high As concentrations in the blackfoot disease(BFD) area is close to that in Kouhu township of Yunlin but the formation depths of these two area are different. For one year survey of oyster, the average total As and inorganic As concentrations are 9.85�b3.7 μg/g (dry wt) and 0.12�b0.12 μg/g (dry wt), respectively. The As concentrations of Putai are distributed higher and wider than those of other areas, because of groundwater or the discharged aquacultural water with high As in Putai. Furthermore, the As concentration of oyster is the highest in fall and the As concentration of aquacultural oyster in the inner sea is higher than that in the outer sea. The analytic result of the chromatograph signal reveals that some oyster samples contain an unknown peak. The peak is identified to be AsS(PO4) by comparison with other investigations. Four edible tissue portions of mugil were also analyzed. Because mugil long-term ingests sediments, the inorganic As concentration of 0.83 μg/g (dry) in the stomach of male aquacultural mugil is the highest. Although sea mugil grows in a low As aqueous environment, the As concentrations of the sea mugil tissues are higher than those of aquacultural mugil tissues, except for the mugil stomach. The different osmoregulation between fresh and salty water may cause the bioaccumulation difference between aquacultural mugil and sea mugil. The As bioaccumulation of small-size clam is higher than that of median-size clam. The inorganic As in small-size clam is 1.31μg/g (dry), and is the highest in the fishes and shellfishes of this study. For indistinctive clam size difference, the As concentration of winter (December) grown clam is higher than that of spring (March) grown clam. For seasonal variation, the As distribution of clam is similar to that of oyster. The order of total As concentrations of analyzed tilapia tissues is squama > intestine �� stomach �� gill > kidney > bone > heart > liver > dorsal muscle. The alimentary canal, including intestine and stomach, and the respiration organ, gill, are a main channel of As entrance into fish body. Therefore, the high As is expected to bioaccumulate in the three organs. The squama with high As content is suitably used to monitor the water quality environment, owing to its convenient acquirement and low cost. According to the inorganic As contents of fishes and shellfishes, the 90th percentiles of daily safe ingestion amounts of oyster, mugil stomach, clam, and tilapia range from 1.7g to 27g, 0.1g to 1.1g, 0.2g to 6.1g, and 1.7g to 34g, respectively, under the human health risk of 10-6. Taiwanese eat tilapia muscle of approximately 1.6 g/day/person calculated by total tilapia production in Taiwan. This average consumption rate of tilapia, which is lower than the low limit of the 90th percentiles of daily safe ingestion amounts of tilapia, reveals that ingesting the tilapia cultured in the blackfoot disease and coastal areas is safe. A safe total As concentration of 145 mg/L in pond water is inversely estimated by using the ingestion rate of 1.6 g/day/person and the relationship between pond water and tilapia under the human health risk of 10-6. Therefore, the aquacultural water standard of As should be revised to reduce the fisherman’s difficulty and burden.


總目錄
摘要……………………………………………………………………….I
Abstract……………………………..…………………………………..IV
總目錄………………………………………………………………….VII
表目錄…………………………………………………....……………..IX
圖目錄………………………………………………………………….XII

第一章 前言………………………………………………………..……1
1-1研究背景及目地………………………………………….…..…..1
1-2研究步驟及流程………………………………….…….………...6

第二章 文獻回顧………………………………………………..………8
2-1砷之化性與毒性…………………………………………….……8
2-2土壤之砷含量………………………………………….………..11
2-3水體之使用與其砷含量………………………………….….….12
2-3-1地下水………………………………………………..…….12
2-3-2養殖池水……………………………………………….…..15
2-3-3海水……………………………….…………………..……17
2-4水產生物之砷含量…………………………………….….…….18
2-4-1海產生物…………………………………………….…..…18
2-4-2雙貝類………………………………………………...……23
2-4-3牡蠣…………….…………………………...……...………25
2-4-4淡水魚類……………………………………………..….…36
2-4-5烏魚……………………………………………..……….…39

第三章 材料與方法…………………………………………...……….47
3-1現場採樣………………………………………………..……….47
3-1-1養殖生態系統…………………………………….……….47
3-1-2西南沿海牡蠣…………………………….……….………54
3-1-3養殖與海生烏魚………………………………….……….55
3-2現場前處理…………………………………………...…………56
3-3試劑………………………………………………….…..………57
3-4總砷分析…………………………………………….……..……58
3-4-1樣品之消化…………………………………….….….……59
3-4-2 HG-AAS上機分析………………….………..……..……..60


3-5物種砷分析………………………………………….…………..61
3-5-1水體樣品過濾處理………….………………….………….63
3-5-2魚貝類樣品萃取與純化………………………..………….63
3-5-3沈積物萃取………………….………………….………….63
3-5-4 HPLC-HG-AAS上機分析………………….….………….64
3-6品質保證與管制…………………………………….…..………65
3-7統計分析………………………………………………...………66

第四章 結果與討論……………………………..……………..………69
4-1養殖用水砷之分布及來源………………………………….…..69
4-1-1烏腳病地區淡水養殖砷含量分布………………..……….69
4-1-2雲林口湖鄉養殖池砷含量分布………………………..….76
4-1-3烏腳病地區與口湖鄉地下水來源之比較………..……….78
4-2台灣主要牡蠣集散地砷物種之分布………….………………..82
4-2-1統計分析……………………………………………..…….82
4-2-2層析圖譜…………………….………………….………...109
4-2-3數據討論…………………………………………..……...115
4-2-4牡蠣AsS之累積……………………………...…………..120
4-3台灣養殖與洄游烏魚砷物種之分析……….…………………123
4-3-1統計分析………………….……….……………….……..123
4-3-2烏魚砷累積來源………………………………...………..149
4-3-3不同生長環境下BCF之差異…….……………..……….155
4-3-4鹽份因子之考量…………………….……………….…...157
4-4烏腳病地區文蛤養殖生態系統……………………………….160
4-4-1養殖文蛤砷物種之分布………………………………….160
4-4-2文蛤體內總砷與各介質之關係………………………….173
4-5烏腳病地區吳郭魚養殖生態系統…………………….………176
4-5-1吳郭魚養殖池水與地下水之關係……………………….179
4-5-2吳郭魚體重與體內總砷之關係…………………….……181
4-5-3吳郭魚體與池水總砷之關係…………………………….184
4-5-4吳郭魚養殖池沈積物與池水總砷之關係……………….186
4-5-5吳郭魚各組織器官之總砷分析……..……………….…..189
4-6安全攝食量與水產用水標準………………….………………192
4-6-1無機砷分析之重要性…………………………..…..…….192
4-6-2水產食品每日安全攝食量……………..…………..…….194
4-6-3砷之水產用水標準探討……………..…………….……..198

第五章 結論與建議………………………………….……………….200
5-1結論……………………….……………………………………200
5-2建議……………………….…………………...……………….203

參考文獻………………………………………………………………205

附錄……………………………………………………………………225

表目錄
表1-1-1水生環境系統中生物所含砷化物……………………….……3
表2-4-1牡蠣砷分析之相關研究………………………………………33
表2-4-2烏魚之年齡與體長關係………………………………………40
表2-4-3 鯔科(mullet)魚類砷分析之相關研究…………………….….45
表 4-1-1 烏腳病地區養殖池水總砷含量檢驗結果……………….…70
表 4-1-2 口湖鄉養殖魚塭池水總砷含量檢驗結果…………….……77
表4-2-1 台灣西南部養殖牡蠣物種砷之統計分布……………..…….87
表4-2-2 牡蠣樣本數之分類……………………………………..…….87
表4-2-3 牡蠣中As(III)之地區、季節及海域分布平均值………….…88
表4-2-4 牡蠣中As(V)之地區、季節及海域分布平均值……….……88
表4-2-5 牡蠣中DMA之地區、季節及海域分布平均值……….……89
表4-2-6 牡蠣中MMA之地區、季節及海域分布平均值………..……89
表4-2-7 牡蠣中無機砷之地區、季節及海域分布平均值………….…90
表4-2-8 牡蠣中總砷之地區、季節及海域分布平均值………….……90
表4-2-9牡蠣砷物種之地區(i)、季節(j)及海域(k)多變異數分析……91
表4-3-1 烏魚體型與生殖腺之基本數據………………………….…124
表4-3-2 烏魚各器官在不同生長地區與性別間總砷濃度分布….…126
表4-3-3 所有烏魚總砷濃度各因子間之相關性……………….……130
表4-3-4 海生烏魚總砷濃度各因子間之相關性……………….……132
表4-3-5 養殖烏魚總砷濃度各因子間之相關性………………….…134
表4-3-6 雌性烏魚總砷濃度各因子間之相關性………………….…136
表4-3-7 雄性烏魚總砷濃度各因子間之相關性………………….…138
表4-3-8 烏魚不同器官組織物種砷平均值及分布範圍………….…140
表4-3-9 烏魚不同器官組織、性別及生長環境之物種砷平均值.…142
表4-3-10多變異數分析烏魚砷物種之器官組織(i)、性別(j)、
生長環境(k)因子顯著性………………………..……….146
表4-4-1 冬季(12月)不同體型之文蛤體內物種砷濃度分布……..…161
表4-4-2 冬季(12月)不同養殖池各項介質之物種砷濃度…..………162
表4-4-3 文蛤體內總砷及物種砷濃度分布………………………….169
表4-4-4 文蛤總砷及物種砷之體型(i)、月份(j)多變異數分析……...171
表4-5-1 吳郭魚養殖生態系中各介質之總砷濃度分布…………….178
表4-5-2 底泥總砷分析結果………………………………………….187
表4-6-1 水產生物之無機砷濃度分布及安全攝食量……………….196

圖目錄
圖1-1-1台灣西南部烏腳病地區與雲林口湖養殖區之地理位置……..4
圖1-1-2吳郭魚、文蛤、牡蠣及烏魚生活水域之示意圖…………..….5
圖1-2-1 研究流程……………………………………………………….7
圖2-4-1 DMA經生物轉換至AsB之途徑………………..……...…….20
圖2-4-2 2002年台灣本島牡蠣月份產量表…………………………27
圖2-4-3 2002年台灣牡蠣主要生產縣市產量表…………………....27
圖2-4-4 台灣西部沿海牡蠣養殖區…………………………………...28
圖2-4-5 牡蠣體內各組織器官之分布………………………..……….32
圖2-4-6 2002年台灣主要縣市烏魚養殖面積統計…………………42
圖2-4-7 鯔科(mullet)體內血液循環系統 ……………………...…….44
圖3-1-1 學甲鎮村里分布地理位置…………………………………...48
圖3-1-2 使用Arc View查詢魚塭位置分布…………………………..50
圖3-1-3烏腳病地區4鄉鎮養殖魚塭分布圖…………………...……..51
圖3-1-4 雲林縣口湖鄉養殖池與地下水井位置分布………………...53
圖3-7-1、多變量變異數分析流程……………………………………..68
圖 4-1-1 學甲鎮養殖池位置與池水總砷濃度分布...….……….........72
圖 4-1-2 布袋鎮養殖池位置與池水總砷濃度分布..........….…...…...73
圖 4-1-3 義竹鄉養殖池位置與池水總砷濃度分布…………….……74
圖4-1-4 雲林縣台17線上YL6與YL7監測井歷年總砷濃度分布...79
圖4-2-1 A 牡蠣在不同季節As(III)之Box-Whisker圖.....……….…...94
圖4-2-1 B 牡蠣在不同地區As(III)之Box-Whisker圖………….……94
圖4-2-2 A 牡蠣在不同季節As(V)之Box-Whisker圖……….…….…95
圖4-2-2 B 牡蠣在不同地區As(V)之Box-Whisker圖……………..…95
圖4-2-3 A 牡蠣在不同季節DMA之Box-Whisker圖………………96
圖4-2-3 B 牡蠣在不同地區DMA之Box-Whisker圖………….……96
圖4-2-4 A 牡蠣在不同季節MMA之Box-Whisker圖………………97
圖4-2-4 B 牡蠣在不同地區MMA之Box-Whisker圖………………..97
圖4-2-5 A 牡蠣在不同季節之無機砷Box-Whisker圖………….……98
圖4-2-5 B 牡蠣在不同地區之無機砷Box-Whisker圖……….....……98
圖4-2-6 A 牡蠣在不同季節之總砷Box-Whisker圖…………....……99
圖4-2-6 B 牡蠣在不同地區之總砷Box-Whisker圖…………….……99
圖4-2-7 牡蠣在不同養殖海域之總砷Box-Whisker圖……..………100
圖4-2-8 牡蠣As(III)分地區、季節之Box-Whisker圖…………..…101
圖4-2-9 牡蠣As(V)分地區、季節之Box-Whisker圖………………102
圖4-2-10 牡蠣DMA分地區、季節之Box-Whisker圖………………103
圖4-2-11 牡蠣MMA分地區、季節之Box-Whisker圖……….……104
圖4-2-12 牡蠣無機砷分地區、季節之Box-Whisker圖……….……105
圖4-2-13 牡蠣總砷分地區、季節之Box-Whisker圖………….……106
圖4-2-14 牡蠣總砷分季節、海域養殖之Box-Whisker圖…….……107
圖4-2-15 牡蠣總砷分地區、海域養殖之Box-Whisker圖……….…108
圖4-2-16 台灣牡蠣(Crassostrea gigas)物種砷之層析圖譜………....110
圖4-2-17西班牙牡蠣(Crassostrea gigas)物種砷之層析圖譜……….112
圖4-2-18 AAS與AFS原子分析裝置簡略圖…………………..….112
圖4-2-19牡蠣查核樣品SRM 1566a物種砷之層析圖譜...................114
圖4-3-1 烏魚不同器官總砷濃度之Box-Whisker圖……………..…127
圖4-3-2 烏魚不同器官及生長地區總砷濃度之Box-Whisker…...…128
圖4-3-3 烏魚不同器官及性別總砷濃度之Box-Whisker圖…..……128
圖4-3-4 烏魚不同器官組織物種砷之Box-Whisker圖………..……140
圖4-3-5 烏魚不同器官組織及性別各物種砷之Box-Whisker圖…..143
圖4-3-6 烏魚不同器官組織及生長環境各物種砷Box-Whisker圖..144
圖4-3-7 Lake Macquarie 各營養階層砷之累積關係…………...…154
圖4-4-1 冬季不同體型文蛤總砷之之Box-Whisker圖…………..…164
圖4-4-2 冬季不同體型文蛤物種砷之Box-Whisker圖…………..…165
圖4-4-4 不同體型文蛤物種砷之Box-Whisker圖………………..…172
圖4-4-5 不同季節文蛤物種砷之Box-Whisker圖………………..…172
圖4-4-6 瓣鰓軟體動物累積和排出重金屬之途徑……………….…175

圖4-5-1 長期監測之4個吳郭魚養殖池地理位置………………..…177
圖4-5-2養殖池水總砷濃度及地下水總砷濃度之迴歸分析……..…180
圖4-5-3 吳郭魚體重與魚肉砷含量之分布.......……………...….......183
圖4-5-4養殖池水總砷濃度及魚體總砷濃度之迴歸分析………..…185
圖4-5-5 底泥總砷推估值與實測值之關係分析………………….…188




參考文獻

Ahmad, K., Report highlights widespread arsenic contamination in Bangladesh, Lancet, 358 : 133-133, 2001

Anawar, H. M, Akai, J., Komaki, K., Terao, H., Yoshioka T., Ishizuka, T., Safiullah, S.,and Kato K., Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes., Journal of Geochemical Exploratio, 77 : 109-131, 2003

Andreae, M. O., Determination of arsenic in natural waters, Analytical Chemistry, 49 : 820-823, 1977

Andreae, M. O., Distribution and speciation of arsenic in natural waters and some marine algae, Deep-Sea Research, 25 : 391-402, 1978

Azcue, J. M. and Dixon, D.G., Effects of past mining activities on the arsenic concentration in fish from Moira Lake, Ontario, Journal of Great Lakes Research, 20 : 717-724 1994

Barwick, M.,and Maher, W., Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, Marine Environmental Research, 56 : 471-502, 2003

Bednar, A. J., Garbarino, J., Burkhardt, M., Ranville J., and Wildeman, T., Field and laboratory arsenic speciation methods and their application to natural-water analysis, Water Research, 38 : 355-364, 2004

Bougrier, S., Hawkins, A. J. S.and Heral, M., Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analysed by flow cytometry., Aquaculture, 150 : 123-134, 1997

Braman, R. S. and Foreback, C. C., Methylated forms of arsenic in the environment., Science, 182 : 1247-1249, 1973

Bryan, G. W., Heavy metal contamination in the sea. In: Marine Pollution; Johnston, R. Ed.; Academic Press:London, 185-302, 1976.

Bryan, G. W. and Hummerstone, L. G., Brown seaweeds as indicators of heavy metals in esturies in South West England., Journal of the Marine Biological Association of the United Kingdom, 53 : 705-720, 1973

Buchet, J. P., and Lauwerys, R., Study of inorganic arsenic methylation by rat liver in vitro relevance for the interpretation of observations in man., Archives of Toxicology, 57:125-129, 1985

Buchet, J.,and Lauwerys, R., Interpretation of inorganic arsenic metabolism in humans in the light of observations made in-vitro and in-vivo in the rat, Applied Organometallic Chemistry, 8 : 191-196, 1994

Caruso, J., Heitkemper, D. T., and B''Hymer, C., An evaluation of extraction techniques for arsenic species from freeze-dried apple samples, Analyst, 126: 136-140, 2001

Castlehouse, H., Smith, C., Raab, A., Deacon, C., Meharg, A., and Feldmann, J., Biotransformation and accumulation of arsenic in soil amended with seaweed, Environmental Science and Technology, 37 : 951-957, 2003

Chang, C. F., Lan, S. C., Pan, B. S., Feed administration of estradiol-17-beta stimulates female differentiation in juvenile grey mullet mugil cephalus., Zoological Studies., 34 : 257-264, 1995

Chatterjee, A, Das, D., and Chakrabortid, A study of ground-water contamination by arsenic in the residential area of Behala, calcutta due to industrial-pollution Environmental Pollution, 80 : 57-65, 1993

Chatterjee, S., Trachtenberg, I., and Edgar, T. F., Mathematical-modeling of a single-wafer rapid thermal reactor., Journal of the Electrochemical Society, 139 : 3682-3689, 1992

Chatterjee, A., Determination of total cationic and total anionic arsenic species in oyster tissue using microwave-assisted extraction followed by HPLC–ICP-MS, Talanta, 51:303–314, 2000

Chen, C. J., Wu, M. M. and Kuo, T. L., Arsenic and cancers., The Lancet, 1: 414-415, 1988

Chen, C. J., Chen, C. W., and Wu, M. M., Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking-water., British Journal of Cancer, 66: 888-892, 1992

Chen, S.L., Dzeng, S.R., Yang, M.H., Chiu, K.H., Shieh, G.M.and Wai, C.M., Arsenic species in groundwaters of the blackfoot disease area, Taiwan, Environmental Science and Technology, 28 : 877-881, 1994

Chiou, H. Y., Hsueh, Y. M., Liaw, K. F., Horng, S. F., Chiang, M. H., Pu, Y. S., Lin, J., S., N., Huang, C., H.,and Chen, C., J.,Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan., Cancer Research, 55: 1296–1300, 1995

Chiou, H. Y., Hsu, Y., H., Wei, M., L., Tseng, C., H. and Chen, C., J., Incidence of transitional cell carcinoma due to arsenic in a drinking water: A follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan, American Journal of Epidemiology, 153: 411-418, 1999

Cockell, K. A., Hilton, J. W., Bettger, W. J., Hepatobiliary and hematological effects of dietary disodium arsenate heptahydrate in juvenile rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology, 103C : 453–458, 1992

Cockell, K. A., and Bettger, W., Investigations of the gallbladder pathology associated with dietary exposure to disodium arsenate heptahydrate in Juvenile rainbow-trout (oncorhynchus-mykiss), Archives of Environmental Contamination and Toxicology, 77 : 233-248, 1993

Cullen, W., R. and Reimer, K., J., Arsenic speciation in the environment, Chemical Reviews, 89 : 713-764, 1989

Cullen, W. R., McBride, B. C., Reglinski, J., The reaction of methylarsenicals with thiols: some biological implications, Journal of Inorganic Biochemistry, 21 : 179–194, 1984.

Cullen, W., R., and Nelson, J., C.,The biotransformation of monomethylarsonate and dimethylarsinate into arsenobetaine in seawater and mussels.,Applied Organometallic Chemistry, 7 : 319-327, 1993a

Cullen, W., R., and Pergantis, S., A., Biotransformation of [h-3] methylarsonic acid in a static seawater system containing mytilus-californianus., Applied Organometallic Chemistry, 7 : 329-334, 1993b

Cullen, W. R., Li, H., Hewitt, G., Reimer, K. j.and Zalunardo, N., Identification of extracellular arsenical metabolites in the growth-medium of the microorganisms Apiotrichum-Humicola and Scopulariopsis-Brevicaulis, Applied Organometallic Chemistry, 8 : 303-311, 1994

Cunningham, P. A.,The use of bivalve molluscs in heavy metal pollution resesrch.In Marine Pollution Functional Responal; Vernberg, W.B., Calabrese, A, Thurberg, F.P., and Vernberg, F.J., Eds.; Academic Press: New York., 183-222, 1979

Debettencourt, A., M., M., and Andreae, M., O., Refractory arsenic species in estuarine waters. ,Applied Organometallic Chemistry, 5 : 111-116, 1991

Debettencourt, A., M., M., Florencio, M., H., Duarte, M., F., N., Gomes, M., L., R., and Boas, L., F., C., V.,Refractory methylated arsenic compounds in estuarine waters - tracing back elusive species., Applied Organometallic Chemistry, 8 : 43-56, 1994

Denton, G. R. M.and Burdon-Jones C., Influence of temperature and salinity on the uptake,distribution and depuration of mercury,cadmium and lead by the Black-lip oyster Saccostrea echinata, Marine biology, 64 : 317-326, 1981

Devesa, V., Suner, M. A. , Lai, V., W., M., Granchinho, S., C., R., Velez, D., Cullen, W.,R., Martinez, J.,M., and Montoro, R. Distribution of arsenic species in the freshwater crustacean procambarus clarkia, Applied Organometallic Chemistry, 16 : 692-700, 2002

Ding, Z.,H., Zheng, B.,S., Long, J.,P., Belkin, H.,E., Finkelman, R.,B., Chen, C.,G., Zhou, D.,X., and Zhou, Y., S., Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China, Applied Geochemistry, 16 : 1353-1360, 2001

Edmonds, J., S., Francesconi, K., A., Cannon, J., R., Raston, C., L., Skelton, B., W., and White, A., H.,Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George, Tetrahedron Letters., 18: 1543-1546, 1977

Edmonds, J.S. and Francesconi, K.A., Arseno-sugars from brown kelp Ecklonia radiata as intermediates in cycling of arsenic in a marine ecosystem. Nature , 289 : 602–604, 1981

Edmonds, J., S., and Francesconi, K., A., Trimethylarsine oxide in estuary catfish (Cnidoglanis macrocephalus) and school whiting (Sillago bassensis) after oral administration of sodium arsenate; and as a natural component of estuary catfish., The Science of the Total Environment., 64, 317-323, 1987

Edmonds, J.,S., Francesconi, K.,A., Arsenic in seafoods - human health-aspects and regulations, Marine Pollution Bulletin, 26 : 665-674, 1993

Edmonds, J.,S., Diastereoisomers of an ''arsenomethionine''-based structure from Sargassum lacerifolium: The formation of the arsenic-carbon bond in arsenic-containing natural products, Bioorganic and Medicinal Chemistry Letters , 10 : 1105-1108 , 2000

Enterline, P., E., Day, R., and Marsh, G., M., Cancers related to exposure to arsenic at copper smelter, Occupational and Environmental Medicine, 52: 28-32, 1995

Francesconi, K.,A., Edmonds, J., S., and Stick, R., V., Accumulation of arsenic in yellow-eye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate., The Science of the Total Environment, 79 59-67, 1989

Francesconi, K.,A., and Edmonds, J.,S., Biotransformation of arsenic in the environment. In Arsenic in the Environment. Part I: Cycling and Characterization; Nriagu, J.O.,Ed.,Wiley: New York, Chapter 10, 221-261, 1994

Francesconi, K.,A., and Edmonds, J.,S., Arsenic and marine organisms., Advances in Inorganic Chemistry, 44: 147-189, 1997

Francesconi, K., A., and Edmonds, J., S.,Arsenic species in marine samples.,Croatica Chemica Acta, 71 : 343-359, 1998

Francesconi, K., A. and Kuehnclt D., Arsenic compounds in the environment. In: Environmental Chemistry of Arsenic; William T. and Frankenberger, J.R.,Ed.,Marcel Dekker Inc: New York, Chapter 3, 51-94, 2002

Gailer, J., Francesconi, K., A., and Edmonds, J., S., Irgolic, K. J., Metabolism of arsenic compounds by the blue mussel mytilus-edulis after accumulation from seawater spiked with arsenic compounds., Applied Organometallic Chemistry, 9: 341-355, 1995

Gamble, B., M., Gallagher, P., A., Shoemaker, J., A., Parks, A., N., Freeman, D.,M., Schwegel, C., A., and Creed, J., T., An investigation of the chemical stability of arsenosugars in basic environments using IC-ICP-MS and IC-ESI-MS/MS, Analyst, 128 : 1458-1461, 2003

Garland, M., Morris, J.S., Rosner, B.A., Stampfer, M.J., Spate, V.L., Baskett, C.J., Willett, W.C.and Hunter, D.J., Trace-element levels as biomarkers - reproducibility over a 6-year period, Cancer Epidemiology Biomarkers and Prevention, 2 : 493-497, 1993

Geiszinger, A., E., Goessler, W., and Francesconi, K., A., The marine polychaete Arenicola marine: its unusual arsenic compound pattern and its uptake of arsenate from seawater., Marine Environmental Research, 53: 37-50, 2002

Gomez-Ariza, J., L., Sanchez-Rodas, D., and Giraldez., I., Selective extraction of iron oxide associated arsenic species from sediments for speciation with coupled HPLC-HG-AAS, Journal of Analytical Atomic Spectrometry, 13 : 1375-1379 , 1998

Gomez-Ariza, J., L., Sanchez-Rodas, D., Beltran, R., and Giraldez, I., Arsenic speciation in biological samples using the couplings HPLC-UV-HG-AAS and HPLC-UV-HG-AFS., International journal of environmental analytical chemistry, 74 : 203-213, 1999

Gomez-Ariza, J., L., Sanchez-Rodas, D., Giraldez, I., and Morales, E., Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS., Analyst, 125 : 401-407, 2000a

Gomez-Ariza, J., L., Sanchez-Rodas, D., Giraldez, I., and Morales, E., A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples, Talanta, 51 : 257-268 , 2000b

Guo, H., R., Cancer risk assessment for arsenic exposure through oyster consumption, Environmental Health Perspectives , 110 : 123-124 , 2002

Han, B., C., Jeng, W., L., Jeng, M., S., Kao, L., T., Meng, P., J., and Huang, Y., L., Rock-shells (Thais clavigera) as an indicator of As, Cu, and Zn contamination on the Putai coast of the black-foot disease area in Taiwan, Archives of Environmental Contamination and Toxicology, 32: 456-461, 1997

Han, B., C., Jeng, W, .L., Chen, R., Y., Fang, G., T., Hung, T., C., Tseng, R., J., Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan., Archives of Environmental Contamination and Toxicology, 35 : 711-720, 1998

Han, B., C., Jeng, W., L., Hung, T., C., Ling, Y., C., Shieh, M., J., Chien, L., C., Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan., Environmental Pollution, 109 : 147-156, 2000

Hanaoka, K., Motoya, T., Tagawa, S., and Kaise, T., Conversion of arsenobetaine by intestinal bacteria of a mollusk liolophura-japonica chitons,. Applied Organometallic Chemistry, 5 : 427-430, 1991

Hanaoka, K., Tagawa, S., and Kaise, T., The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms, Hydrobiologia., 235: 623-628, 1992a

Hanaoka, K., Koga, H., Tagawa, S., and Kaise, T., Degradation of arsenobetaine to inorganic arsenic by the microorganisms occurring in the suspended substances.,Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology ,101 : 595-599, 1992b

Hanaoka, K., Tagawa, S., and Kaise, T.,The fate of organoarsenic compounds in marine ecosystems., Applied Organometallic Chemistry., 6 : 139-146, 1992c

Hanaoka, K., Satow, T., Tagawa, S., and Kaise, T., Formation of arsenobetaine from arsenocholine by microorganisms occurring in sediments., Applied Organometallic Chemistry, 6 : 375-381, 1992d

Hanaoka, K., Uchida, K., Tagawa, S., and Kaise, T., Uptake and degradation of arsenobetaine by the microorganisms occurring in sediments., Applied Organometallic Chemistry, 9 : 573-579, 1995

He, B., Jiang, G., B., and Xu, X., B., Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation, Fresenius Journal of Analytical Chemistry, 368 : 803-808 , 2000

Hellou, J., Warren, W., Payne, J., Belkhode S., and Lobel, P., Heavy-metals and other elements in 3 tissues of cod, gadus-morhua from the northwest Atlantic, Marine Pollution Bulletin, 24 : 452-458 , 1992

Hellou, J., Fancey, L., and Payne, J., Concentrations of 24 elements in bluefin tuna, thunnus-thynnus from the northwest Atlantic, Chemosphere, 24 : 211-218, 1992

Hsia, M., P., and Liu, S., M., Accumulation of organotin compounds in Pacific oysters, Crassostrea gigas, collected from aquaculture sites in Taiwan, Science of The Total Environment, 313 : 41-48, 2003

Huang, Y., K., Lin , K., H., Chen, H., W., Chang, C., C., Liu, C., W., Yang, M., H., and Hsueh, Y., M., Arsenic species contents at aquculture farm and in farmed mouthbreeder (Oreochromis Mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology, 41, 1491-1500, 2003.

Hung, Y., W., Effects of temperature and chelating agents on cadmium uptake
in the american oyster. Bulletin of environmental contamination and toxicology. 28: 546-551; 1982.

Hunter, D., A., Goessler, W., and Francesconi, K., A., Uptake of arsenate, irimethylarsine oxide, and arsenobetaine by the shrimp Crangon crangon, Marine Biology, 131 : 543-552, 1998

Hsueh, Y., M., Cheng, G., S., Wu, M., M., Yu, H., S., Kuo, T., L., and Chen, C., J., Multiple risk-factors associated with arsenic-induced skin-cancer - effects of chronic liver-disease and malnutritional status, British Journal of Cancer, 71 : 109-114 , 1995

Hwang, P. P., Tolerance and ultrastructural response of branchial chloride cells on salinity changes in euryhaline teleost, Oreochromis mossambicus., Marine biology., 94 : 643-649, 1987

Hwang, P. P., Sun, C. M., and Wu, S. M., Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia (Oreochromis mossambicus) during seawater acclimation, Marine biology., 100 : 295-299, 1989

Jakubowski, M., Trzcinka-Ochocka, M., Razniewska, G., and Matczak, W., Biological monitoring of occupational exposure to arsenic by determining urinary content of inorganic arsenic and its methylated metabolites., International Archives of Occupational and Environmental Health, 71: S29-32, 1998

Jeng, M., S., Jeng, W., L., Hung, T., C., Yeh, C., Y., Tseng, R., J., Meng, P., J. and Han, B., C., Mussel Watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-1998., Environmental Pollution, 110: 207-215, 2000

Johnson, D., L., and Pilson, M., E., Q., Arsenate in the western North Altantic and adjacent regions, Journal of Marine Research, 30: 140-149, 1972

Jørgensen N. O. G.,Uptake of L-valine and other amino acids by the polychaete nereis viren, Marine Biology, 52 : 45-52, 1979

Kaise, T., Watanabe, S., and Itoh, K., The acute toxicity of arsenobetaine. Chemosphere, 14, 1327-1332, 1985

Kaise, T.,Yamauchi, H., Horiguchi, Y., Tani, T., Watanabe, S., Hirayama, T.,and Fukui, S., A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice, Appl. Organomet. Chem., 3, 273-277, 1989

Kaise, T., and Fukui, S., The chemical form and acute toxicity of arsenic compounds in marine organisms, Applied Organometallic Chemistry, 6 : 155-160, 1992

Kaise, T., Sakurai, T., Saitoh, T., Matsubara, C., Takada-Oikawa, N., and Hanaoka, K., Biotransformation of arsenobetaine to trimethylarsine oxide by marine microorganisms in a gill of clam Meretrix lusoria, Chemosphere, 37 : 443-449 , 1998

Kirby, J., Maher, W., Chariton, A., and Krikowa, F.,Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia., Applied Organometallic Chemistry , 16 : 192-201, 2002a

Kirby, J. and Maher, W., Tissue accumulation and distribution of arsenic compounds in three marine fish species: relationship to trophic position., Applied Organometallic Chemistry, 16 : 108-115, 2002b

Kitchin, K., T., Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites, Toxicology and Applied Pharmacology, 172: 249-261, 2001

Kohlmeyer, U., Kuballa J., and Jantzen, E., Simultaneous separation of 17 inorganic and organic arsenic compounds in marine biota by means of high-performance liquid chromatography/inductively coupled plasma mass spectrometry, Rapid Communications In Mass Spectrometry, 16 : 965-974, 2002

Kumaresan, M., Riyazuddin, P., Overview of speciation chemistry of arsenic, Current Science 80 : 837-846 2001

Kuo, Y., M., Liu , C., W., and Lin , K., H., Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan, Water Research, 38: 148-158, 2004

Lai, V., W., M., Cullen, W., R., and Ray, S., Arsenic speciation in scallops, Marine Chemistry, 66 : 81-89 , 1999

Larsen, E., H., Speciation of dimethylarsinyl-riboside derivatives (arsenosugars) in marine reference materials by HPLC-ICP-MS.,Fresenius Journal of Analytical Chemistry , 352 : 582-588, 1995

Larsen, E.H., Andersen, N.L., Moller, A., Petersen, A., Mortensen, G. K. and Petersen, J., Monitoring the content and intake of trace elements from food in Denmark, Food Additives and Contaminants, 19 : 33-46, 2002

Larsen, E.,H., and Francesconi, K., A., Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters, Journal of The Marine Biological Association of the United Kingdom, 83 : 283-284 , 2003

Le, X.,C., Cullen, W.R., Reimer, K.J., Decomposition of organoarsenic compounds by using a microwave-oven and subsequent determination by flow-injection hydride generation atomic-absorption spectrometry, Applied Organometallic Chemistry,6 : 161-171,1992

Le, S., X., C., Cullen, W., R., and Reimer, K., J., Speciation of arsenic compounds in some marine organisms., Environmental Science and Technology , 28 : 1598-1604, 1994

Le, X.C., Lu, X.F., Ma, M.S., Cullen, W.R., Aposhian, H.V.and Zheng, B.S., Speciation of key arsenic metabolic intermediates in human urine, Analytical Chemistry, 72 : 5172-5177, 2000

Li, W., H., Wei , C., Zhang, C., Van, Hulle., M., Cornelis, R., and Zhang, X., R., A survey of arsenic species in Chinese seafood, Food and Chemical Toxicology ,41 : 1103-1110, 2003

Li, W., Yang, S., Cao, Z., Andry, C.D., Chou, I.N., Effects of arsenite on the cytoskeleton and cellular GSH in cultured cells., The Toxicologist , 2 : 125, 1991

Liao, C., M., Chen, B., C., Singh, S., Lin, M., C., Liu, C., W., and Han, B., C., Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis mossambicus) from a blackfoot disease area in Taiwan., Environmental Toxicology, 18: 252-259, 2003a

Liao, C.M. and Ling, M.P., Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan, Archives of Environmental Contamination and Toxicology, 45 : 264-272, 2003b

Lin, M., C., Liao, C., M., Liu, C., W., and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from Blackfoot disease area in Taiwan., Bulletin of Environmental Contamination and Toxicology, 67: 91-97, 2001

Lin, M., C., Cheng, H., H., Lin, H., Y., Chen, Y., C., Chen, Y., P., Chang-Chien G., P., Chou, Y., H., Liao, C., M., Dai, C., F., Han, B., C., and Liu, C., W., Arsenic accumulation and acute toxicity in aquacultural juvenile milkfish (Chanos chanos) from balckfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology, 72: 248-254, 2004

Lin, Y. S., Liang, M. H., Growth and setting of cultured oyster(Crassostrea Gigas Thunberg) in Putai bay., Bulletin of the Institute of Zoology, Academia Sinica., 21 : 129-143, 1982

Liu, C., W., Lin, K., H., and Kuo, Y., M., Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, The Science of the Total Environment., 313 : 77-89, 2003

Lin, M., C., Liao, C., M., Liu, C., W., and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from Blackfoot disease area in Taiwan, Bulletin of Environmental Contamination And Toxicology , 67 : 91-97 , 2001

Lowe, T. P., May, R., W., Brumbaugh, W., E., and Kane, D., A., National contaminant monitoring program: concentrations of 7 elements in freshwater fish, 1978- 1981., Arch Environ Contam Toxicol , 14: 363-388, 1985

Lunde, G.., Occurrence and transformation of arsenic in the marine environment., Environmental Health Perspect, 19: 47-52, 1977

Maher, W. A. and Clarke, S. M., The occurrence of arsenic in marine macroalgae form two coastal areas of South Australia, Marine pollution bulletin, 15 : 111-112, 1984

Maher, W., Goessler W., Kirby, J., and Raber, G.., Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Marine Chemistry, 68 : 169-182, 1999

Malachowski, M. E., An update on arsenic., Clinics in Laboratory Medicine, 10 : 459-472, 1990

May, T. W., and McKinney, G. L., Cadmium,lead, mercury, arsenic, and selenium concentrations in freshwater fish, Pesticide Monitoring Journal, 15, 14-38, 1981

Mazumder, D. N. G., Haque, R., Ghosh, N., De, B., K., Santra, A., Chakraborti, D., and Smith, A.,H., Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India, International Journal of Epidemiology , 29 : 1047-1052 , 2000

Mcgeachy, S. M., Dixon, D., G., Effect of temperature on the chronic toxicity of arsenateto rainbow-trout (oncorhynchus-mykiss), Canadian Journal of Fisheries And
Aquatic Sciences, 47 : 2228-2234, 1990

McKiernan, J. W., Creed, J., T., Brockhoff, C., A., Caruso, J., A., and Lorenzana, R., M., A comparison of automated and traditional methods for the extraction of arsenicals from fish, Journal of Analytical Atomic Spectrometry, 14 : 607-613 , 1999

McSheey, S., Pohl, P., Lobinski, R., and Szpunar, J., Investigaiton of arsenic speciation in oyster test reference material by multidimentsional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS), The Analyst, 126:1055-1062, 2001

McSheehy, S., Szpunar, J., Morabito, R., and Quevauviller, P., The speciation of arsenic in biological tissues and the certification of reference materials for quality control, Trac-Trends in Analytical Chemistry, 22 : 191-209 , 2003

Millward, G. E., Ebdon, L., and Walton, A. P., Seasonality in estuarine sources of methylated arsenic., Applied Organometallic Chemistry, 7 : 499-511, 1993

Morita, M., Uehiro, T., and Fuwa, K., Determination of arsenic compounds in biological samples byliquid chromatography with inductively coupled argonplasma- atomic emission spectrometric detection., Analytical Chemistry, 53:1806-1808, 1981.

Morita, M., and Shibata, Y.,Chemical form of arsenic in marine macroalgae – review.,Applied Organometallic Chemistry, 4 : 181-190, 1990

Munoz, O., Velez, D., and Montoro, R., Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III)+As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry, Analyst, 124 : 601-607 , 1999

Munoz, O., Devesa, V., Suner, M. A., Velez, D., Montoro, R., Urieta, I., Macho, M. L., Jalon, M., Total and inorganic arsenic in fresh and processed fish products., Journal of Agricultural and Food Chemistry, 48 : 4369-4376, 2000

Murray, L., A., Raab, A., Marr, I., L., and Feldmann, J., Biotransfonnation of arsenate to arsenosugars by Chlorella vulgaris., Applied Organometallic Chemistry, 17: 669-674, 2003

Nakazato, T., Taniguchi, T., Tao, H, Tominaga, M., Miyazaki, A., Ion-exclusion chromatography combined with ICP-MS and hydride generation-ICP-MS for the determination of arsenic species in biological matrices., Journal of Analytical Atomic Spectrometry 15 : 1546-1552 2000

Okazaki, R. K., and Panietz, M., H., Depuration of twelve trace metals in tissues of the oyster Crassostrea gigas and Crassostrea virginica, Marine Biology, 63: 113-120, 1981

Oladimeji, A. A., Quadri, S.U., DeFreitas, A.S.W., Long-term effects of arsenic accumulation in rainbow trout Salmo gairdneri., Bulletin of Environmental Contamination and Toxicology. 32 : 732–741. 1984

Onishi, H., Arsenic.,(Handbook of geochemistry, Vol 11-2) , Berlin, Springer-Verlag (Chapter 33),1969

Øygard, J. K., Lundebye, A., K., and Julshamn, K., Determination of inorganic arsenic in marine food samples by hydrochloric acid distillation and flow-injection hydride-generation atomic absorption spectrometry, Journal of Aoac International , 82 : 1217-1223 , 1999

Pedlar, R., M., and Klaverkamp, J., F., Accumulation and distribution of dietary arsenic in lakewhitefish (Coregonus clupeaformis), Aquatic Toxicology, 57 : 153-166 ,2002

Petrick, J. S., Ayala-Fierro, F., Cullen ,W., R., Carter, D., E., and Aposhian, H., V., Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes, Toxicology and Applied Pharmacology, 163 : 203-207, 2000

Phillips, D. J. H., Arsenic in aquatic organisms: a review, emphasizing chemical speciation, Aquatic Toxicology, 16: 151-186, 1990

Phillips, D. J. H.,The chemical forms of arsenic in aquatic organisms and their interrelationships. In Arsenic in the Environment. Part I: Cycling and Characterization; Nriagu, J.O.,Ed.,Wiley: New York, Chapter 11,263-288,1994

Pontius, F., W., Brown, K., G., and Chen, C., J., Health implication of arsenic in drinking water, Journal American Water Works Association.; 86: 52-63, 1994

Rankin, M., G., and Dixon, D., G., Acute and chronic toxicity of waterborne arsenite to rainbow-trout (oncorhynchus-mykiss), Canadian Journal of Fisheries and Aquatic Sciences , 51 : 372-380 , 1994

Robert, V., H., and Tanis, E., A., Probability and Statistical Inference (6th ed.), Prentice Hall International, Inc., 704, 2001

Rosen, B. P., Biochemistry of arsenic detoxification, Febs Letters, 529 : 86-92, 2002

Sanchez-Rodas, D., Geiszinger, A., Gomez-Ariza, J., L., and Francesconi, K., A., Determination of an arsenosugar in oyster extracts by liquid chromatography-electrospray mass spectrometry and liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic fluorescence spectrometry., Analyst,127 : 60-65 2002

Santosa, S.,J., Wada, S., and Tanaka, S., Distribution and cycle of arsenic compounds in the ocean., Applied Organometallic Chemistry, 8 : 273-283, 1994

Schmitt., C., J., and Brumbaugh, W., G., National contaminant biomonitoring program - concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in united-states fresh-water fish, 1976-1984, Archives of Environmental Contamination and Toxicology , 19 : 731-747, 1990

Schoof, R.,A., Yost, L., J., Eickhoff, J., Crecelius, E., A., Cragin, D., W., Meacher, D., M., and Menzel, D., B., A market basket survey of inorganic arsenic in food, Food and Chemical Toxicology ,37 : 839-846 , 1999

Schuhmacher, M., and Domingo, J., L., Concentrations of selected elements in oysters (Crassostrea angulata) from the Spanish coast, Bulletin of Environmental Contamination and Toxicology ,56 : 106-113 , 1996

Sharma, S,.Applied Multivariate Techniques. John Wiley �t Sons Inc., New York. ,342-373. 1996

Shibata, Y., Jin, K., and Morita, M., Arsenic compounds in the edible red alga, porphyra-tenera, and in nori and yakinori, food items produced from red algae., Applied Organometallic Chemistry, 4 : 255-260, 1990

Shibata.,Y., and Morita, M.,Characterization of organic arsenic compounds in bivalves., Applied Organometallic Chemistry, 6 : 343-349, 1992

Shiomi, K. Arsenic in marine organisms: chemical forms and toxicological aspects. In Arsenic in the Environment. Part II: Human Health and Ecosystem Effects; Wiley Series in Advances in Environmental Science and Technology; Nriagu, J. O., Series Ed.; Wiley: New York,; Vol. 27, Chapter 12.,1994

Shiomi, K., Sugiyama, Y., Shimakura, K., Nagashima, Y., Retention and biotransformation of arsenic compounds administered intraperitoneally to carp, Fisheries Science, 62 : 261–266, 1996

Smedley, P., L., Kinniburgh, D., G., A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, 17 : 517-568 , 2002

Sorenson, E.M.B.,Arsenic. In: Metal Poisoning in Fish ;Sorenson, E.M.B. Ed.; CRC Press: New York,; 61–99, 1991

Suhendrayatna, Ohki, A., Nakajima, T., and Maeda, S., Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes., Chemosphere, 46: 319-324, 2002 a

Suhendrayatna, Ohki. A., Nakajima, T., and Maeda, S., Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica., Chemosphere, 46: 325-331, 2002 b

Suner, M., A., Devesa, V., Munoz, O., Lopez, F., Montoro, R., Arias, A.M., and Blasco, J., Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications, The Science of the Total Environment , 242 : 261-270 , 1999

Suner, M., A., Devesa, V., Clemente,M., J., Velez, D., Montoro, R., Urieta, I., Jalon, M., and Macho, M., L., Organoarsenical species contents in fresh and processed seafood products, Journal of Agricultural and Food Chemistry , 50 : 924-932 , 2002

Takatsu, A.,and Uchiumi, A., Abnormal arsenic accumulation by fish living in a naturally acidified lake, Analyst ,123 : 73-75, 1998

Tamaki, S., and Frankenverger, W., T., Environmental biochemistry of arsenic., Reviews of Environmental Contamination and Toxicology, 124: 79-110, 1992

Thomas, D., J., Styblo, M., and Lin, S., The cellular metabolism and systemic toxicity of arsenic., Toxicology and Applied Pharmacology, 176: 127-144, 2001

Tseng, W., P., Chu, H., M., How, S., W., Fong, J., M., Lin, C., S. and Yeh, S., Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan., Journal of the National Cancer Institute, 40: 453-463, 1968

Tseng, W., P., Effects and dose-response relationship of skin cancer and blackfoot disease with arsenic., Environmental Health Perspectives, 19: 109-119, 1977

Ünlü, M.Y. & S.W. Fowler., Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis. Marine Biology, 51: 209-219. 1979

Valette-Silver, N., J., Riedel, G., F., Crecelius, E., A., Windom, H., Smith, R., G., and Dolvin, S., S., Elevated arsenic concentrations in bivalves from the southeast coasts of the USA, Marine Environmental Research , 48 : 311-333 , 1999

Vahter, M., Marafante, E., and Dencker, L., Metabolism of arsenobetaine in mice, rats and rabbits, The Science of the Total Environment, 30: 197–211, 1983.

Velez, D. Ybanez, N., and Montoro, R., Migration of arsenobetaine from canned seafood to brine, Journal of Agricultural and Food Chemistry, 45 : 449-453 ,1997

Vilano, M., and Rubio, R., Determination of arsenic species in oyster tissue by microwave-assisted extraction and liquid chromatography-atomic fluorescence detection., Applied Organometallic Chemistry,15 : 658-666, 2001

Villa-Lojo, M., C., Alonso-Rodriguez, E., Lopez-Mahia, P., Muniategui-Lorenzo, S., and Prada-Rodriguez, D., Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue, Talanta , 57 : 741-750 , 2002

Wei, C., Li, W., H., Zhang, C., Van Hulle, M., Cornelis, R., and Zhang, X.,R., Safety evaluation of organoarsenical species in edible porphyra from the China Sea, Journal of Agricultural and Food Chemistry, 51 : 5176-5182 , 2003

Welch, A., H., Westjohn, D., B., Helsel, D., R., and Wanty, R., B., Arsenic in groundwater of the United State: occurrence and geochemistry., Ground Water, 38: 589-604, 2000

Wright, S. h., Wunz, Tm. and Silva, A. l., Betaine transport in the gill of a marine mussel, Mytilus-Californianus, American Journal of Physiology, 263 : R226-R232 Part 2, 1992

Yamamoto, S., Konishi, Y., Murai, T., Shibata, Ma., Matsuda, T., Kuroda, K., Endo, G., and Fukushima, S., Enhancing effects of an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in a multiorgan carcinogenesis bioassay.,Applied Organometallic Chemistry, 8 : 197-199, 1994

Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M., and Edmonds, J., S., Human urine certified reference material for arsenic speciation, Clinical Chemistry ,46 : 1781-1786, 2000

王聖瑋,底泥對烏腳病地區養殖生態系統中物種砷分布之影響,碩士論文,國立臺灣大學生物環境系統工程學研究所,台北,2003。

台灣貝類資料庫(http://shell.sinica.edu.tw/)。

行政院環保署(http://www.epa.gov.tw/)。

行政院環保署,烏腳病流行地區飲用水井含砷量檢測計畫,1993。

行政院環保署,台灣沿海養殖海域水質採樣檢驗結果,2001。

行政院農業委員會,兩岸烏魚資源之養護管理與共同利用,2001。
行政院農業委員會漁業署(http://www.fa.gov.tw/)。

行政院農業委員會漁業署,循環水養殖技術之訓練與推廣-合理養殖用水量之調查與分析,2001。

巫文隆、廖國焱、虞士貞,臺灣雙殼貝類砷含量初步分析,貝類學報,第十九卷,第21-25頁,1995。

李志威,台灣西南港尾及新塭鑽井岩心地球化學特性之探討,碩士論文,國立台灣大學地質學研究所,台北,2000。

李宗翰,吳郭魚鰓表皮MR細胞的形態與功能研究,博士論文,國立台灣大學動物學研究所,台北,1996

邱再預、田金平、鄭守訓、林阿洋,底棲養殖魚類重金屬含量調查,食品科學,第十七卷,第一期,第79-86頁,1990。

吳鴻志,熱休克蛋白90(HSP90)在吳郭魚(Oreochromis mossambicus)適應海水的滲透壓調節機制之角色,碩士論文,國立台灣大學漁業科學研究所,台北,2003

林義棟,台南縣宅港及三寮灣鑽探岩沈積環境分析,碩士論文,國立成功大學地質球科學研究所,台南,1996。

殷名稱,魚類生態學,基隆:水產出版社,第201-213頁,1998。

姚琬琳,人體進食海產類食物後尿液中砷代謝物種分析,碩士論文,國立台灣大學職業醫學與工業衛生研究所,台北,2002。

夏明鴻,台灣西南岸平原義竹井研心地球化學研究,碩士論文,國立台灣大學地質學研究所,台北,1998。

黃奇瑜,「濁水溪沖積扇之地質鑽探岩心有孔蟲微體化石分析及地層對比研究」,濁水溪沖積扇地下水及水文地質研討會論文集,台北,第55-66頁,1996。

黃朝盛、謝勝雄、吳春基、吳龍靜、林俊辰、蘇偉成,台灣海域鯔魚資源調查與監測,水試專訊,第二期,第21-23頁,2003。

黃詠愷,烏腳病盛行地區養殖魚貝類砷物種分析研究,碩士論文,台北醫學大學公共衛生研究所,台北,2002。

畢如蓮,台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,碩士論文,國立台灣大學地質學研究所,台北,1995。

曾政鴻,臺中港魚市魚貨重金屬含量之調查,中華民國營養學會雜誌,第二十一卷,第二期,第177-188頁,1996。

台灣省農林廳漁業局,合理養殖用水量之現況調查分析(二),財團法人農業工程研究中心研究報告,1998。

台灣省農林廳漁業局,合理養殖用水量之現況調查分析(三),財團法人農業工程研究中心研究報告,1999。

陳由瑄,食用牡蠣後尿中砷代謝物分布之變異性,碩士論文,國立台灣大學職業醫學與工業衛生研究所,台北,2003。

陳麒全,台灣嘉南平原新東及錦湖兩地沈積物砷富集與釋出之研究,碩士論文,國立台灣大學地質科學研究所,台北,2003。

郭慶老,「台灣烏魚資源研究之回顧與展望」,兩岸海洋漁業發展研討會專輯,1994。

陸知慧、林瑞著、楊仕喜、張碧秋、周薰修,台灣地區養殖魚類重金屬之調查,藥物食品檢驗調查年報,第八卷,第209-227頁,1990。

漁業年報,行政院農業委員會漁業署(http://www.fa.gov.tw/),2002

漁業年報,行政院農業委員會漁業署(http://www.fa.gov.tw/),2003

劉純妃、鄭秋真,台彎地區市售養殖魚類中重金屬含量之調查,藥物食品檢驗局調查研究年報,第八卷,第189-195頁,1990。

賴慈華、劉平妹、袁彼得、江崇榮,「濁水溪南岸平原之晚第四紀地下水質」,濁水溪沖積扇地下水及水文地質研討會論文集,台北,第79-100頁,1996。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李孟壕(民89)。數位落差的省思。網路通訊雜誌,112,142-143。
2. 巫有鎰(民91)。資訊化社會中教育機會均等的轉機與挑戰-從偏遠地區的資訊教育談起。教育研究月刊,99,28-33。
3. 吳齊殷(民92)。化資訊社會數位落差的危機為轉機發展多元資訊教育。現代化研究,34,21-30。
4. 吳美美(民92)。網路時代國家現代化指標資訊素養與資訊政策。現代化研究,34,1-10。
5. 何榮桂(民90)。他山之時可以攻錯~亞太地區(臺、港、新、日、韓)資訊教育的發展與前瞻。資訊與教育雜誌,81,1-6。
6. 王貴珠(民92)。通識教育有關資訊素養問題之探討。警學叢刊,34(2),270-287。
7. 王正利(民92b)。家庭因素對國中生電腦學習成就影響之研究-以高雄縣旗美地區為例。資訊與教育雜誌,95,35-41。
8. 王正利(民92a)。網咖使用經驗對國中生電腦學習成就影響之研究-以高雄縣旗美地區為例。資訊與教育雜誌,93,106-112。
9. 毛榮富(民90)。從APARNET到沖繩IT憲章:數位落差的政治經濟考察。思與言,39(1),29-87。
10. 于第(民92)。技專校院資訊素養相關課程實施成效之個案研究-以景文技術學院「圖書館與網陸資源應用」課程為例。景文技術學院學報,14,1-18。
11. 57.鄧振源、曾國雄,層級分析法(AHP)的內在特性與應用,中國統計學報,第27卷,第6期第5-22頁,第7期第1-20頁,1989。
12. 50.楊坤堂,學習風格教學,特教園丁,pp5-8,1996。
13. 33.郭重吉,評介學習風格之有關研究,資優教育季刊,23 ,pp7-16,1987。
14. 12.吳百薰,學習風格理論探究,國教輔導,37(5),頁47-53,1998。
15. 2.王仁昭,電腦電路模擬應用於工專電路教學實驗研究,中州學報第8期頁105–142,1995 。
 
系統版面圖檔 系統版面圖檔