(3.238.96.184) 您好!臺灣時間:2021/05/15 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉仲華
研究生(外文):Chung-Hua Liu
論文名稱:糯性米穀粉及預糊化處理對麵糰性質及饅頭品質之影響
論文名稱(外文):Effects of Waxy Rice Flour and Pregelatinized Wheat Flour on the Dough Property and Quality of Steam Bread
指導教授:賴喜美賴喜美引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:135
中文關鍵詞:預糊化回凝老化糯性米穀粉饅頭
外文關鍵詞:stalingretrogradationpregelatinizationsteam breadwaxy rice flour
相關次數:
  • 被引用被引用:9
  • 點閱點閱:780
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要分為將糯性米穀粉及麵粉混合為組合性麵粉以製備饅頭,以及將部分麵粉預糊化以製備饅頭兩大部分,糯性米穀粉對麵粉之取代量及預糊化之麵粉比例同樣設定為10、20及30%。以糯性米穀粉取代部分麵粉可以降低組合麵粉中直鏈澱粉含量,但會稀釋麵筋蛋白含量;而麵粉預糊化處理則會造成澱粉及麵筋蛋白性質改變。以上兩種原料處理方式皆會改變麵糰拉伸性質,造成饅頭外觀品質下降,經以RSM試驗設計法尋找出最適之配方組合,並依此進行加水量及活性麵筋添加量的適當調整後,饅頭外觀品質可提升至與100%麵粉所製之饅頭接近,甚至更佳。將以最適配方製得之饅頭分別於室溫、冷藏及冷凍-解凍循環條件下進行貯存試驗,結果顯示,饅頭硬度上升速率與澱粉回凝速率有相關性存在,並受貯存條件影響;此外,於室溫貯存期間,20%或30%麵粉預糊化處理之饅頭,即使無法檢測出澱粉回凝的現象、水分含量亦無明顯變化,其饅頭的硬度仍持續上升。以組合麵粉或部分預糊化麵粉製得之饅頭,其起始硬度及貯存後之最終硬度均低於100%麵粉所製得者。於室溫貯存下,降低直鏈澱粉含量及麵粉預糊化處理均能有效降低饅頭起始硬度及澱粉回凝速率,但在冷藏或冷凍-解凍循環貯存下,效果則較不顯著。其中,20%糯性米穀粉取代之組合麵粉或20%麵粉預糊化製得之饅頭其外觀品質與以100%麵粉製得者接近,且具有良好的貯存品質。而品評試驗結果指出,品評員對此二組饅頭之整體接受度皆顯著高於以100%麵粉製得之饅頭,除此之外,此二組饅頭即使於室溫貯存一天,品評員對其接受度仍相同於、甚至優於以100%麵粉製得之新鮮饅頭。由此可知,只要將配方做適當之調整,以糯性米穀粉取代部分麵粉或將部分麵粉預糊化之方式製備饅頭,皆能顯著提高饅頭外觀及其貯存品質。

There are two major parts of this study. In the first part, the composite flour, a mixture of waxy rice flour and wheat flour was used for steam bread making and the effects of waxy rice flour on the properties of dough and steam bread were investigated. In the second part, some wheat flour was pregelatinized before the sponge dough prepared and the effect on pregelatinized wheat flour on the properties of dough and steam bread were investigated. The amounts of wheat flour substituted by waxy rice flour in the composite flour and the ratio of pregelatinized wheat flour used were 10%、20% and 30%. The substitution of waxy rice flour in composite flour reduced in reducing its amylose content, and diluting its gluten content. The changes of pasting and gluten properties of dough, which was prepared with some of pregelatinized wheat flour, were observed. The changes of compositions of flour and pregelatinization treatment resulted in the significant changes of extensibility of dough, furthermore, the appearance and storage quality of steam bread was undesirable. The optimal formulations were able to produce the good appearance and storage quality of steam bread by adjusting the water absorption and vital gluten addition according to the results of the RSM experimental design. The steam breads made by the optimal formulations were then stored under three conditions (i.e. room temperature, refrigeration and freeze-thaw cycle) and the moisture content, hardness and enthalpy of steam bread crumb were determined during the storage periods. The results showed that the hardness of steam bread increased with increasing storage time in all three storage conditions, but with different rates. The moisture content of steam breads were different because the formulations but the moisture content did not change in each steam bread during storage. The retrogradation rate of starch was influenced by the formulation and storage condition. That is, the steam bread made with high water absorption was soft at fresh, but the degree of retrogradation during storage varied after storage. The steam bread made with 20% or 30% pregelatinized wheat flour before sponge preparation, no starch retrogradation was observed by the DSC determination although the hardness of crumb increased under the storage at room temperature. The steam bread made with the optimal formulations for composite flour (wheat:waxy rice=8:2) and 20% pregelatinized wheat flour had the great acceptability when evaluated by sensory tests. The steam bread made with composite flour (wheat:waxy rice=8:2) maintained the softer crumb texture after 1 day storage at room temperature than the steam bread made with 100% wheat flour. Such conclusion can be made that the proper adjustments of formulation is the requirements to make good appearance, eating and storage qualities of steam bread when waxy rice flour or pregelatinized wheat flour was applied. The waxy rice flour and pregelatinized wheat flour did improve the storage quality of steam bread stored at room temperature, which was attributed majority to the high moisture content of steam bread and/or to the weak starch gelation strength due to reduce the amylose content in composite flour.

目錄 ------------------------------------------------------------------------------------------ I
表次 ------------------------------------------------------------------------------------------ IV
圖次 ---------------------------------------------------------------------------------------- VII
中文摘要 ------------------------------------------------------------------------------------ X
英文摘要 ------------------------------------------------------------------------------------ XI
第一章、前言 ------------------------------------------------------------------------------ 1
第二章、文獻整理 ------------------------------------------------------------------------ 3
一、小麥與麵粉 --------------------------------------------------------------------- 3
二、老化現象 ------------------------------------------------------------------------ 7
三、米穀粉 --------------------------------------------------------------------------- 12
四、預糊化 --------------------------------------------------------------------------- 14
第三章、材料與方法 --------------------------------------------------------------------- 17
一、實驗材料 ------------------------------------------------------------------------ 17
(一)麵粉 ------------------------------------------------------------------------- 17
(二)糯性米穀粉 ---------------------------------------------------------------- 17
(三)活性麵筋 ------------------------------------------------------------------- 17
(四)酵母 ------------------------------------------------------------------------- 17
(五)化學藥品 ------------------------------------------------------------------- 17
二、樣品製備 ------------------------------------------------------------------------ 18
(一)麵糰製備 ------------------------------------------------------------------- 18
(二)麵粉預糊化及燙麵糰製備 ---------------------------------------------- 18
(三)饅頭製作 ------------------------------------------------------------------- 19
三、實驗設計與統計分析 --------------------------------------------------------- 20
(一)反應曲面法 ---------------------------------------------------------------- 20
(二)饅頭貯存試驗 ------------------------------------------------------------- 25
(三)統計分析 ------------------------------------------------------------------- 25
四、實驗方法 ------------------------------------------------------------------------ 26
(一)水分含量測定 ------------------------------------------------------------- 26
(二)粗蛋白含量測定 ---------------------------------------------------------- 26
(三)視直鏈澱粉含量測定 ---------------------------------------------------- 27
(四)糊液黏度性質測定 ------------------------------------------------------- 28
(五)麵筋性質測定 ------------------------------------------------------------- 30
(六)穀粉熱性質分析 ---------------------------------------------------------- 30
(七)發酵過程麵糰pH值測定 ----------------------------------------------- 31
(八)燙麵糰預糊化程度測定 ------------------------------------------------- 31
(九)麵糰拉伸性質測定 ------------------------------------------------------- 31
(十)饅頭色澤測定 ------------------------------------------------------------- 32
(十一)饅頭硬度測定 ---------------------------------------------------------- 32
(十二)饅頭澱粉回凝熱焓值測定 ------------------------------------------- 33
(十三)麵糰及饅頭SEM微細結構觀察 ------------------------------------ 33
(十四)麵糰及饅頭MRI結構觀察及水分子狀態測定 ------------------ 33
(十五)饅頭品評試驗 ---------------------------------------------------------- 35
第四章、結果與討論 --------------------------------------------------------------------- 37
一、糯性米穀粉對組合麵粉性質及麵糰性質之影響 ------------------------ 37
(一)視直鏈澱粉含量變化 ---------------------------------------------------- 37
(二)穀粉熱性質變化 ---------------------------------------------------------- 39
(三)穀粉糊液黏度性質變化 ------------------------------------------------- 39
(四)麵筋性質變化 ------------------------------------------------------------- 41
(五)加水量對麵糰拉伸性質之影響 ---------------------------------------- 43
(六)組合麵粉製備饅頭之品質 ---------------------------------------------- 44
二、以反應曲面法評估糯性米穀粉、加水量及活性麵筋添加量對組合麵粉
性質及麵糰性質之影響 ------------------------------------------------------- 50
(一)糯性米穀粉及活性麵筋添加量對組合麵粉性質之影響 ---------- 50
(二)糯性米穀粉、加水量及活性麵筋添加量對麵糰拉伸性質
之影響 --------------------------------------------------------------------- 52
(三)糯性米穀粉取代量對饅頭外觀及貯存品質之影響 ---------------- 55
(四)糯性米穀粉取代量對麵糰及饅頭微細結構之影響 ---------------- 75
(五)結語 --------------------------------------------------------------------------- 80
三、預糊化處理對麵粉及麵糰性質之影響 ------------------------------------ 81
(一)預糊化麵粉熱性質變化 ------------------------------------------------- 82
(二)預糊化麵粉糊液黏度性質變化 ---------------------------------------- 83
(三)預糊化處理對麵筋性質之影響 ---------------------------------------- 84
(四)醱酵過程燙麵糰pH值變化 --------------------------------------------- 85
(五)加水量對燙麵糰拉伸性質之影響 ------------------------------------- 86
四、以反應曲面法評估麵粉預糊化比例及加水量對麵糰拉伸性質
之影響 --------------------------------------------------------------------------- 88
(一)麵粉預糊化比例及加水量對燙麵糰性質之影響 ------------------- 88
(二)預糊化處理對饅頭外觀及貯存品質之影響 ------------------------- 90
(三)麵粉預糊化比例對燙麵糰及饅頭微細結構之影響 ---------------- 108
(四)結語 ------------------------------------------------------------------------- 111
五、糯性米穀粉及預糊化處理對麵糰性質與饅頭品質之影響 ------------ 112
六、饅頭內部結構及水分子狀態 ------------------------------------------------- 120
七、饅頭官能品評試驗 ------------------------------------------------------------- 124
第五章、結論 ------------------------------------------------------------------------------ 126
第六章、參考文獻 ------------------------------------------------------------------------ 128
附錄 ----------------------------------------------------------------------------------------- 135

表次

表一、饅頭基本配方 --------------------------------------------------------------------- 19
表二、糯性米穀粉及活性麵筋添加量對組合麵粉糊液黏度及麵筋性質RSM試驗之變級對應實際值 ----------------------------------------------------------- 20
表三、二變因五變級之RSM實驗設計試驗條件組合 ----------------------- 21
表四、糯性米穀粉、加水量及活性麵筋添加量對麵糰拉伸性質RSM試驗
之變級對應實際值 -------------------------------------------------------------- 22
表五、三變因五變級之RSM實驗設計試驗條件組合 ----------------------- 23
表六、加水量及預糊化程度對燙麵糰拉伸性質RSM試驗之變級對應實
際值 --------------------------------------------------------------------------------- 23
表七、加水量及活性麵筋添加量對20%糯性米穀粉取代及20%預糊化處理麵糰
性質影響試驗之變級對應實際值 -------------------------------------------- 25
表八、視直鏈澱粉含量測定之標準溶液製備 ---------------------------------------- 28
表九、RVA操作條件設定 -------------------------------------------------------------- 29
表十、麵糰拉伸性質及饅頭硬度測定之質地分析儀參數設定 ---------------- 32
表十一、饅頭之官能品評表 ------------------------------------------------------------- 36
表十二、麵粉、糯性米穀粉及組合麵粉之視直鏈澱粉含量 ---------------------- 38
表十三、麵粉、糯性米穀粉及組合麵粉之熱性質 ----------------------------------- 40
表十四、麵粉、糯性米穀粉及組合麵粉之穀粉糊液性質 ------------------------ 40
表十五、麵粉、糯性米穀粉及組合麵粉之麵筋性質 ------------------------------ 43
表十六、50%加水量組合麵粉之麵糰拉伸性質 ------------------------------------- 44
表十七、未添加及添加活性麵筋組合麵粉之加水量調整 ------------------------- 45
表十八、未添加及添加活性麵筋組合麵粉所製得之饅頭外觀品質及硬度測
定 --------------------------------------------------------------------------------- 47
表十九、組合麵粉以RSM進行麵筋及穀粉糊液黏度性質測定之結果 ------ 51

表二十、糯性米穀粉及活性麵筋添加量對組合麵粉之麵筋及麵粉糊液黏度性
質之顯著影響因子及其二次迴歸方程式 -------------------------------- 52
表二十一、組合麵粉以RSM進行麵糰拉伸性質測定之結果 ------------------ 53
表二十二、糯性米穀粉、加水量及活性麵筋添加量對麵糰拉伸性質之顯著
影響因子及其二次迴歸方程式 ----------------------------------------- 54
表二十三、10%糯性米穀粉取代之配方組合試驗之加水量及活性麵筋添加量 56
表二十四、10%糯性米穀粉取代組經加水量及活性麵筋添加量調整使麵糰之Rmax/E理論值分別為(A)110/25、(B)80/25、(C)60/25及(D)50/25
之饅頭外觀品質 ----------------------------------------------------------- 57
表二十五、20%糯性米穀粉取代時之對應加水量及活性麵筋添加量 -------- 60
表二十六、20%糯性米穀粉取代組經加水量及活性麵筋添加量調整使麵糰之Rmax/E理論值分別為(A)90/24、(B)70/24、(C)50/24及(D)40/24 之
饅頭外觀品質 --------------------------------------------------------------- 61
表二十七、30%糯性米穀粉取代時之對應加水量及活性麵筋添加量 ----------- 64
表二十八、30%糯性米穀粉取代組經加水量及活性麵筋添加量調整使麵糰之Rmax/E理論值分別為(A)70/22、(B)60/22及(C)50/22 之饅頭外觀
品質 ---------------------------------------------------------------------------- 65
表二十九、糯性米穀粉取代組最適配方組成所製得之新鮮饅頭的外觀品質
、水分含量、硬度及澱粉回凝熱焓值 ----------------------------------- 69
表三十、預糊化處理對穀粉熱性質之影響 ------------------------------------------- 81
表三十一、預糊化處理對穀粉糊液黏度性質之影響 ------------------------------- 82
表三十二、預糊化處理對麵筋性質之影響 ------------------------------------------ 83
表三十三、預糊化處理對燙麵糰拉伸性質之影響 (麵糰加水量:50%) ---------- 85
表三十四、預糊化麵糰以RSM進行燙麵糰拉伸性質測定之結果 -------------- 86
表三十五、預糊化比例及加水量對燙麵糰拉伸性質之顯著影響因子及其二次迴
歸方程式 --------------------------------------------------------------------- 87
表三十六、10%麵粉預糊化處理並以加水量調整使燙麵糰Rmax/E論值分別為 (A1)80/45、(B1)50/50及(C1)50/53 之饅頭外觀品質 ----------------- 90
表三十七、20%麵粉預糊化處理並以加水量調整使燙麵糰Rmax/E論值分別為(A2)90/35、(B2)60/39及(C2)50/43 之饅頭外觀品質 ----------------- 92
表三十八、30%麵粉預糊化處理並以加水量調整使燙麵糰Rmax/E論值分別為(A3)90/31、(B3)70/33及(C3)60/36.5之饅頭外觀品質 ---------------- 95
表三十九、不同麵粉預糊化比例最適配方組成所製得之新鮮饅頭的外觀品質
、水分含量、硬度及澱粉回凝熱焓值 ----------------------------------- 98
表四十、以RSM進行麵糰加水量及活性麵筋添加量對20%糯性米穀粉取代之
燙麵糰拉伸性質測定之結果 ----------------------------------------------- 109
表四十一、加水量及活性麵筋添加量對20%糯性米穀粉取代之燙麵糰顯著影
響因子及其二次迴歸方程式 --------------------------------------------- 110
表四十二、20% 糯性米穀粉取代及20%麵粉預糊化處理組對應之加水量及活
性麵筋添加量 --------------------------------------------------------------- 111
表四十三、20%糯性米穀粉取代及20%預糊化並調整加水量及活性麵筋量使
麵糰之Rmax/E之理論值分別為(A)50/28, (B)40/30, 及(C)30/32之
饅頭外觀品質 --------------------------------------------------------------- 113
表四十四、饅頭官能品評結果 --------------------------------------------------------- 121




圖次

圖一、穀粉糊液黏度變化圖 -------------------------------------------------------------- 29
圖二、麵粉、糯性米穀粉及組合麵粉之視直鏈澱粉含量 ------------------------- 38
圖三、麵粉、糯性米穀粉及組合麵粉之糊液黏度變化圖 -------------------------- 41
圖四、未添加活性麵筋之組合麵粉所製得之饅頭外觀及橫切面照片 ----------- 48
圖五、添加活性麵筋之組合麵粉所製得之饅頭外觀及橫切面照片 ------------- 49
圖六、10%糯性米穀粉取代組加水量及活性麵筋添加量對麵糰Rmax及E值
之影響 ------------------------------------------------------------------------------- 56
圖七、(a)1號麵粉 (Rmax/E=53/34)及10%糯性米穀粉取代組經加水量及活
性麵筋添加量調整使麵糰之Rmax/E理論值分別為 (b)Rmax/E=110/25、(c)Rmax/E=80/25及(d) Rmax/E=60/25之饅頭外觀及橫切面照片 -------- 58
圖八、20%糯性米穀粉取代組加水量及活性麵筋添加量對麵糰Rmax及E值之
影響 ---------------------------------------------------------------------------------- 59
圖九、(a)1號麵粉 (Rmax/E=53/34)及20%糯性米穀粉取代組經加水量及活性
麵筋添加量調整使麵糰之Rmax/E理論值分別為(b)Rmax/E=70/24、
(c)Rmax/E=50/24及(d) Rmax/E=40/24之饅頭外觀及橫切面照片。 ---- 62
圖十、30%糯性米穀粉取代組加水量及活性麵筋添加量對麵糰Rmax及E值
之影響 ------------------------------------------------------------------------------- 63
圖十一、(a)1號麵粉 (Rmax/E=53/34)及30%糯性米穀粉取代組經加水量及活性
麵筋添加量調整使麵糰之Rmax/E理論值分別為, (b)Rmax/E=80/21, (c)Rmax/E=70/21, 及(d) Rmax/E=60/21之饅頭外觀及橫切面照片 --- 66
圖十二、組合麵粉所製饅頭於室溫貯存期間之(a)水分含量、(b)硬度及
(c)熱焓值變化 ------------------------------------------------------------------- 70
圖十三、組合麵粉所製饅頭於冷藏貯存期間之(a)水分含量、(b)硬度及
(c)熱焓值變化 ------------------------------------------------------------------- 72
圖十四、組合麵粉所製饅頭於冷凍-解凍循環期間之(a)水分含量、(b)硬度
及(c)熱焓值變化 ---------------------------------------------------------------- 74
圖十五、以MRI觀察糯性米穀粉取代組麵糰於醱酵前後之內部結構變化,(a)及(b)1號麵粉、(c)及(d)10%、(e)及(f)20%(g)及(h)30%取代 ------------ 76
圖十六、以掃描式電子顯微鏡 (1000x) 觀察最後醱酵後之麵糰結構,(a)1號
麵粉、(b) 10%、(c) 20%及(d)30%糯性米穀粉取代 --------------------- 78
圖十七、以掃描式電子顯微鏡 (1000x) 觀察饅頭結構,(a)1號麵粉、(b)10%、
(c)20%及(d)30%糯性米穀粉取代 ------------------------------------------- 79
圖十八、預糊化麵粉之糊液黏度變化圖 ---------------------------------------------- 82
圖十九、醱酵過程中燙麵糰pH值變化 ----------------------------------------------- 84
圖二十、麵粉預糊化比例及加水量對燙麵糰Rmax及E值之影響 --------------- 89
圖二十一、(a)2號麵粉 (Rmax/E=31/56)及10%麵粉預糊化並經加水量調整使
燙麵糰之Rmax/E理論值分別為(b)80/45、(c)50/50及(d)50/53之饅
頭外觀及橫切面照片 ------------------------------------------------------- 91
圖二十二、(a)2號麵粉(Rmax/E=31/56)及20%麵粉預糊化並經加水量調整使
燙麵糰之Rmax/E理論值分別為(b)90/35、(c)60/39及(d)50/43之饅
頭外觀及橫切面照片 ------------------------------------------------------- 93
圖二十三、(a)2號麵粉 (Rmax/E=31/56)及30%麵粉預糊化並經加水量調整使
燙麵糰之Rmax/E理論值分別為(b)90/31、(c)70/33及(d)60/36.5之饅
頭外觀及橫切面照片 ------------------------------------------------------- 96
圖二十四、燙麵糰所製饅頭於室溫貯存期間之(a)水分含量、(b)硬度及 (c)熱焓
值變化 ------------------------------------------------------------------------- 100
圖二十五、燙麵糰所製饅頭於冷藏貯存期間之(a)水分含量、(b)硬度及 (c)熱焓
值變化 ------------------------------------------------------------------------- 102
圖二十六、燙麵糰所製饅頭於冷凍-解凍循環期間之(a)水分含量、(b)硬度及
(c)熱焓值變化 ---------------------------------------------------------------- 104
圖二十七、以MRI觀察麵糰醱酵過程之內部結構變化,(a)未經預糊
化處理,整形後、(b) 未經預糊化處理,最後醱酵後、(c)10%麵
粉預糊化處理,整形後、(d)10%麵粉預糊化處理,最後醱酵後、
(e)20%麵粉預糊化處理,整形後、(f)20%麵粉預糊化處理,最後
醱酵後、(g)30%麵粉預糊化處理,整形後、(h)30%麵粉預糊化處
理,最後醱酵後 ------------------------------------------------------------- 106
圖二十八、以掃描式電子顯微鏡 (1000x) 觀察最後醱酵後之麵糰結構,(a)未
經預糊化處理、(b) 10%麵粉預糊化、(c)20%麵粉預糊化及(d)30%
麵粉預糊化 ------------------------------------------------------------------ 107
圖二十九、加水量及活性麵筋添加量對20%糯性米穀粉取代及20%麵粉預糊
化處理之燙麵糰Rmax及E值之影響 ------------------------------------ 111
圖三十、以20%糯性米穀粉取代及20%麵粉預糊化處理之饅頭製備過程中麵
糰與饅頭外觀變化情形,(a)醱酵完成、(b)蒸製開始、(c)蒸製8 min後
、(d)蒸製完成 ------------------------------------------------------------------ 114
圖三十一、(a)2號麵粉 (Rmax/E=53/34)與20%糯性米穀粉取代及20%麵粉預
糊化處理組經加水量及活性麵筋添加量調整使麵糰之Rmax/E理論
值分別為(b)Rmax/E=50/28、(c)Rmax/E=40/30及 (d) Rmax/E=30/32
之饅頭外觀及橫切面照 ----------------------------------------------------- 115
圖三十二、以MRI觀察饅頭內部結構,(a) 100%麵粉、(b)20%糯性米穀粉取代
之組合麵粉及 (c) 20%麵粉預糊化處理 -------------------------------- 117
圖三十三、新鮮饅頭內部組織水分子T2 值分佈圖 (25℃) ----------------------- 118
圖三十四、新鮮饅頭內部組織水分子T2 值分布圖 (8℃) ---------------------- 118
圖三十五、饅頭貯存期間 (8℃) 水分子狀態變化情形 ---------------------------- 119


沈美卿。1999。特異稻米品種之澱粉微細結構及其回凝特性。國立台灣大學食品科技研究所碩士論文。

李俊霖。2003。提高紅麴中monacolin K、GABA與降低citrinin 生成量之研究。國立台灣大學農業化學研究所碩士論文。

吳幸芬。1995。麵包老化的原因及影響。烘焙工業64:38-40.

金秦基。1999。不同產地蕎麥澱粉之理化性質及其麵條產品特性探討。國立台灣大學農業化學研究所博士論文。

曾見昇。2001。微生物麩胺酸轉胺酶對麵糰物化性質之改良與其在烘焙上之應用。國立台灣大學農業化學研究所碩士論文。

廖宏儒。2000。麵包製程中麵糰的物化特性。烘焙工業 89:68-73.

鄭美娟。1997。使製程便利、產品美觀的預糊化澱粉。烘焙工業74:52-53.

賴喜美。1997。熟米穀粉性質對中式糕點品質之影響。穀研所研究報告第66輯。

AACC. 2000. Approved Method of the American Association of Cereal Chemist. 10th ed. Minnesota:AACC.

Alsberg CL. 1927. Starch in flour. Cereal Chem. 4:485-492.

Atwell WA. 2001. Wheat Flour. Minnesota: Eagan. p 27-46.

Atwell WA, Hood LF, Lineback DR, Varriano ME and Zobel HF. 1988. The terminology and methodology associated and basic starch phenomena. Cereal Foods World. 33:306-311.

Bechtel WG, Meisner DG and Bradley WB. 1953. The effect of the crust on the staling of bread. Cereal Chem. 30:160-168.

Bhattacharya M, Erazo-Castrej SV, Doehlert DC and McMullen MS. 2001. Staling of bread as affected by waxy wheat flour blends. Cereal chem. 79:178-182.

Biliaderis CG, Tonogai J, Perez C.M and Juliano BO. 1993. Thermophysical properties of milled rice starch as influenced by variety and parboiling method. Cereal Chem. 70:512-516.

Biliaderis CG, Page CM, Maurice TJ and Juliano BO. 1986. Thermal characterization of rice starches : a polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34:6-14.

Cisneros-Zevallos L, Saltveit ME and Krochta JM. 1997. Hydroscopic coatings control surface white discoloration of peeled (minimally processed) carrots during storage. J. Food Sci. 62:363-366.

Collado LS and Corke H. 1999. Heat-moisture treatment effects on sweetpotato starches differing in amylose content. Food Chem. 65:339-346.

Davidou S, Lemeste M and Bekaert D. 1996. A contribution to the study of staling of white bread : effect of water and hydrocolloid. Food Hydrocoll. 10:375-383.

Gray JA and Bemiller JN. 2003. Bread staling : molecular basis and control. Comprehensive Reviews in Food Science and Food Safety. 2:1-21.

Hatakawa T, Seo SW and Igaue E. 1980. Electron microscopic observation of rice grain. Part I. Morphology of rice starch. J. Jap. Soc. Starch Sci. 27:173.

Hibi Y. 2001. Effect of retrograded waxy corn starch on bread staling. Starch/Stärke. 53:227-234.

Hixon RM. 1943. Some recent developments in starch chemistry. Bakers Dig. 17:19.

Hizukuri S. 1986. Polymodal distribution of the chain lengths of amylopections, and its significance. Carbohydr. Polym. 147:342-347.

Hood LF. 1982. Current concepts of starch structure. In: Lineback DR and Inglett GE, editors. Food Carbohydrates. Marcel Dekker. NY:USA. p 217-263.

Hoseney RC, Lineback DR and Seib PA. 1978. Role of starch in baked foods. Bakers Dig. 52:11-16.

Huang S, Betker S, Quail K and Moss R. 1993. An optimized processing procedure by response surface methodology (RSM) for northern-style Chinese steamed bread. J. Cereal Sci. 18:89-102.

Hug-lten S, Escher F and Conde-petit B. 2001. Structural properties of starch in bread and bread model systems: Influence of an antistaling α-amylase. Cereal Chem. 78:421-428.

Jane J, Chen YY, Lee LF, Mcpherson AE, Wong KS, Radosavljevic M and Kasemsuwan T. 1999. Effects of branch chain length and amylose content on gelatinisation and pasting properties of starch. Cereal Chem. 76:629-637.

Jane J, Kasemsuwan T, Leas S, Zobel H and Robyt JF. 1994. Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke. 46:121-129.

Juliano BO. 1998. Varietal impact on rice quality. Cereal Foods World. 43:207-222.
Kim SK, D’Appolonia BL. 1977a. Effect of pentosans on the retrogradation of wheat starch gels. Cereal Chem. 54:150-160.

Kim SK, D’Appolonia BL. 1977b. Bread staling studies. III. Effect of pentosans on dough, bread, and bread staling rate. Cereal Chem. 54:225-229.

Kulp K and Lorenz K. 1981. Heat-moisture treatment of starches I. Physicochemical properties. Cereal Chem. 58:46-48.

Lai HM. 2001. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chem. 72:455-463.

Lee MR, Swanson BG and Baik BK. 2001. Influence of amylose content on properties of wheat starch and bread making quality of starch and gluten blends. Cereal Chem. 78:701-706.

Lemeste M, Huang VT, Panama J Anderson G and Lentz R. 1992. Glass transition of bread. Cereal foods world. 37:264-267.

Lin W and Lineback DR. 1990. Changes in carbohydrate fractions in enzyme-supplemented bread and the potential relationship to staling. Starch/Stärke. 42:385-394.

Lorenz K and Kulp K. 1981. Heat-moisture treatment of starches. II. Functional properties and baking potential. Cereal Chem. 58:49-52.

Martin ML, Zeleznak KJ and Hoseney RC. 1991. A mechanism of bread fiming. II. Role of starch swelling. Cereal Chem. 68:498-503.

Mi YK, Hyun MS and Hae CC. 1997. Varietal variation in gelatinisation and adaptability to rice bread processing and their interrelation. Korean J. Crop Sci. 42:344-351.
Nakazawa F, Noguchi S and Takahashi J. 1984. Thermal equilibrium state of starch-water mixture studied by differential scanning calorimetry. Agric. Biol. Chem. 48:2647-2653.

Qi X, Tester RF, Snape CE and Ansell R. 2003. Molecular basis of the gelatinisation and swelling characteristics of waxy rice starches grown in the same location during the same season. J Cereal Sci. 37:363-376.

Rogers DE, Zeleznak KJ, Lai CS and Hoseney RC. 1988. Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chem. 65:398-401.

Russell PL. 1983. A kinetic study of bread staling by differential scanning calorimetry and compressibility measurements. The effect of added monoglyceride. J. Cereal Sci. 1:297-303.

Schultz AS, Schoonover FD, Fisher RA and Jacker SS. 1952. Regardation of crumb starch staling in commercial bread by bacterial α-amylase. Cereal Chem. 29:200.

Schoch TJ and French D. 1947. Studies on bread staling. I. The role of starch. Cereal Chem. p 231-249.

Senti FR and Dimler RJ. 1960. Changes in starch and gluten during aging of bread. Bakers Dig. 34:28-32.

Shi YC and Seib PA. 1992. The structure of 4 waxy starches related to gelatinisation and retrogradation. Carbohydr. Res. 227:131-145.

Sivaramakrishnan HP, Senge B and Chattopadhyay PK. 2004. Rheological properties of rice dough for making rice bread. J. Food Engineering. 62:37-45.

Siswoyo TA Tanaka N and Morita N. 1999. Effect of lipase combined with α-amylase on retrogradation of bread. Food Sci. Technol. Res. 5:356.
Slade L and Levine H. 1987. Recent advances in starch retrogradation. In: Stivala SS, Crescenzi V, Dea ICM, editors. Industrial Polysaccharides-The impact of biotechnology and advanced methodologies. Gordon and Breach. NY: USA. p 387-430.

Slade L and Levine H. 1988. Non-equilibrium melting of native granular starch: I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbonhydr. Polym. 8:182-208.

Stear AC. 1990. Chemical changes in yeasted doughs during fermentation. In : Handbook of Breadmaking Technology. Barking, England:Elsevier Science, p 479-491.

Stute R. 1992. Hydrothermal modification of starches: difference between annealing and heat moisture treatment. Starch/Stärke. 44:205-214.

Swinkels JJM. 1985. Composition and properties of commercial native starches. Starch/Stärke. 37:1.

Takeda Y, Hizukuri S and Juliano BO. 1986. Purification and structure of amylose from rice starch. Carbohydr. Res. 148:299.

Takano H, Naito S, Koizumi M and Kano H. 2002. Fermentation process and grain structure of baked breads from frozen dough using freeze-tolerant yeasts. J. Food Sci. 67:2725-2733.

Tipples KH. 1969. The relation of starch damage to the baking performance of flour. Bakers Dig. 43:28.

Toufeili I, Habbal Y, Shadarevian S and Olabi A. 1999. Substitution of wheat starch with non-wheat starches and cross-linked waxy barley starch affects sensory properties and staling of Arabic bread. J. Sci. Food and Agric. 79:1855-1860.
Vandeputte GE, Vermeylen R, Geeroms J and Delcour JA. 2003. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. Cereal Sci. 38:43-52.

Wunderlich B. 1976. Macromolecular physics. Vol. 2. New York:Academic.

Zeleznak K and Hoseney RC. 1986. The role of water in retrogradation of wheat starch gel and bread crumb. Cereal Chem. 63:407-411.

Zhou M, Robards K, Glennin-Homes M and Helliweel S. 1998. Structure and pasting properties of oat starch. Cereal Chem. 75:273-281.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李明仁 (1996) 彩色豆馬勃對松樹及相思樹幼苗生長與抗猝倒病之效應。嘉義農專學報 49:1-23。
2. 曾世昌、郭幸榮、李遠欽 (1991) 鹽沫對木麻黃之若干生理為害。中華林學季刊 24(3):27–34。
3. 顏江河、林哲毅 (2002) 兩種土壤中接種菌根對大頭茶苗木的生長效應。林業研究季刊 24(1):45-52。
4. 王永順、蘇睿智 (2004) 耐鹽植物藉由調控細胞內鉀離子濃度以維持鹽逆境下的生存。科學農業 52(7,8):180–188。
5. 陳慶芳 (1995) 不同鹽分濃度對欖李種子發芽及幼苗生長之影響。嘉義農專學報 42:29-38。
6. 高景輝、林安秋 (1985) 鹽性與植物生長。科學農業 33 (11–12):365–368。
7. 陳健忠、張喜寧 (1997) 叢枝菌根對寄主植物磷吸收之影響。中國園藝 43(3):175-181
8. 翁仁憲 (1996) 結縷草之耐鹽性與其原產地降雨量之關係。中華農業氣象 3 (2):91–95。
9. 陳泰安、張喜寧 (1994) 囊叢枝菌根菌分類簡史及其生產與運用。科學農業 42(9,10):284-296。
10. 陳清義、陳明義、林信輝 (1983) 黃槿耐鹽性之研究。中興理工學報20:17-27。
11. 郭幸榮、郭秀桃 (1998) 鹽分對四種臺灣原生闊葉樹種之為害。中華林學季刊 31(4):361–376。
12. 范貴珠、宋明軒 (2003) 土壤鹽度對欖仁苗木生長、水分狀態及葉綠素濃度之影響。林業研究季刊 25(3):57-72。
13. 范貴珠、陳心怡 (2002) 土壤鹽度對繖楊苗木生長、水分狀態及葉綠素濃度之影響。林業研究季刊24(4):57-72。
14. 范貴珠、許博行、張峻德 (2001) 土壤鹽度對欖李苗木光合作用之影響。林業研究季刊 23(3):47-62。
15. 胡弘道 (1978) 內生菌根孢子接種對紅檜幼苗生長之影響。科學發展月刊 6(11):1064-1077。