(3.235.245.219) 您好!臺灣時間:2021/05/07 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳嫈穎
研究生(外文):Ying-Ying Chen
論文名稱:多波段量子點紅外線偵測元件之光電特性
論文名稱(外文):The Optical and Electrical Properties of Multi-Color Quantum Dot Infrared Photodetector
指導教授:李嗣涔李嗣涔引用關係
指導教授(外文):Si-Chen Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:105
中文關鍵詞:量子點紅外線偵測器量子點多波段
外文關鍵詞:Multi-ColorQuantum Dot Infrared PhotodetectorQuantum Dot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由在砷化銦量子點上誘W2奈米的鋁砷化鎵,使得3 ML的砷化銦/鋁砷化鎵/砷化鎵量子點紅外線偵測器具有5.6、9.5以及15.7 μm多波段之響應。根據隨雷射必v變化之光激放光頻譜(PL)可得知,短波長波段的響應是從大顆或是小顆量子點的基態到砷化鎵傳導帶造成的,而長波長波段的響應則是大顆量子點的基態到激發態所貢獻的。此外,由2.2 ML的砷化銦/鋁砷化鎵/砷化鎵量子點紅外線偵測器可觀察到較高的響應值以及負微分電導的效應。本文中同樣詳細探討具有鋁砷化鎵以及銦鋁砷化鎵阻擋層的砷化銦/砷化鎵量子點紅外線偵測器。其中不同成分的銦鋁砷化鎵阻擋層所造成之影響亦被研究。增加阻擋層中銦的濃度,位障高度便會降低。而使用較低的阻擋層,其目的是減少暗電流,但仍保持相當的光電流。
By capping the InAs quantum dots (QDs) with 2 nm AlGaAs layer, the 3 monolayer (ML) InAs/AlGaAs/GaAs quantum dot infrared photodetector (QDIP) exhibits multi-peaks at 5.6, 9.5, and 15.7 μm, respectively. According to the laser power dependent PL spectra, the short-wavelength peaks are responsible for the large and small QDs size distributions from the ground state to GaAs conduction band, respectively. However, the long-wavelength peak is attributed to the bound-to-bound transition from ground to first excited state of large QD. The properties of 2.2 ML InAs/AlGaAs/GaAs QDIPs are also investigated. The phenomena of high responsivity and negative differential conductance (NDC) are observed. Then, the characteristics of the QDIP clamping with Al0.3Ga0.7As and In0.17Al0.25Ga0.58As blocking barrier layers are discussed. Besides, QDIPs with two InxAlyGa1-x-yAs blocking layers are also investigated. When the In composition increases, the blocking barriers would be lower. The purpose is to decrease the dark current without affecting photocurrent.
Chapter 1 Introduction 1

Chapter 2 The Fundamentals of Infrared Detectors and Experiments 4
2.1 The Fundamentals of QDIP 4
2.1.1 Thermal Radiation 4
2.1.2 Infrared Detectors 6
2.1.3 Quantum Dot Infrared Photodetectors 9
2.2 Process Flow 11
2.2.1 Fabrication Processes 12
2.2.2 H3PO4-H2O2-H2O Etching Solution 17
2.2.3 Lift-off Process 20
2.3 Measurement Systems 20
2.3.1 Current-Voltage Measurement 21
2.3.2 Introduction of FTIR 21
2.3.3 Relative Spectral Response 25
2.3.4 Absolute Responsivity 27
2.3.5 Specific Detectivity 30

Chapter 3 The Characteristics of InAs/AlGaAs/GaAs Quantum Dot Infrared Photodetector 31
3.1 The InAs/AlGaAs/GaAs QDIP 32
3.1.1 Sample Preparation 32
3.1.2 Photoluminescence Measurement 34
3.1.3 Results and Discussion 38
3.2 The Effect of InAs QD Thickness 59
3.2.1 Sample Preparation 59
3.2.2 Results and Discussion 59

Chapter 4 The Characteristics of QDIPs 75
4.1 QDIP Clamping with Al0.3Ga0.7As and In0.17Al0.25Ga0.58As Blocking Layers 76
4.1.1 Sample Structure 76
4.1.2 Results and Discussion 76
4.2 The Effects of the InxAlyGa1-x-yAs Blocking Layers 89
4.2.1 Sample Structure 89
4.2.2 Results and Discussion 89

Chapter 5 Conclusions 99

Bibliography 101
[1] S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, Appl. Phys. Lett. 81,1369 (2002).
[2] H. Kaplan, Photonics Spectra, June, p.104 (1999)
[3] K. K. Choi, The Physics of Quantum Well Infrared Photodetectors, World Scientific, River Edge, New Jersey, 1997.
[4] A. G. U. Perera, W. Z. Shen, S. G. Matsik, H. C. Liu, M. Buchanan, and W. J. Schaff , Appl. Phys. Lett. 72, 1596 (1998)
[5] Amlan Majumdar, K. K. Choi, J. L. Reno, and D. C. Tsui, Appl. Phys. Lett. 83, 5130 (2003)
[6] M. Z. Tidrow, Xudong Jiang, Sheng S. Li, and K. Bacher, Appl. Phys. Lett. 74, 1335 (1999)
[7] M. Z. Tidrow, J. C. Chiang, S. S. Li, and K. Bacher, Appl. Phys. Lett. 70, 859 (1997)
[8] Amlan Majumdar, K. K. Choi, J. L. Reno, L. P. Rokhinson, and D. C. Tsui, Appl. Phys. Lett. 82, 686 (2003)
[9] J. C. Phillips, K. Kamath, and P.Bhattacharya, Appl. Phys. Lett. 72, 2020 (1998).
[10] S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen and M. Razeghi, Appl. Phys. Lett. 73 (1998) 963.
[11] V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996).
[12] K. H. Schmidt, G. Medeiros-Ribeiro, J. Garcia, and P. M. Petroff, Appl. Phys. Lett. 70, 1727 (1997).
[13] M.O. Manasreh, Semiconductor quantum wells and superlattices for long-wavelength infrared detectors, Boston : Artech House, c1993
[14] J. M. García, J. P. Silveira, and F. Briones, Appl. Phys. Lett. 77 409 (2000).
[15] F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, Phys. Rev. B, 64,085305(2001)
[16] P. B. Joyce, E. C. Le Ru, T. J. Krzyzewki, G. R. Bell, R. Murray, and T. S. Jones, Phys. Rev. B, 66, 075316(2002)
[17] K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, and G. Weimann, J. Phys. (Paris) Colloq. C5-3, 107 (1993).
[18] T. Fukui, S. Ando, Y. Kokura, and T. Toriyama, Appl. Phys. Lett. 58, 2018 (1991).
[19] Y. Nagamune, S. Tsukamoto, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 64, 2495 (1994).
[20] M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D.Bimberg, S.S.Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Yu.Egorov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. Lett. 74, 4043 (1995).
[21] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (J. Wiley & Sons, Chichester, 1999)
[22] Gallium Arsenide Materials, Devices, and Circuits, edited by M. J. Howes and D.V. Morgan (1985).
[23] Handbook of Instrumental Techniques for Analytical Chemistry, Ch.15, edited by C. P. Sherman Hsu.
[24] L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985).
[25] S. Z. Chang, T. C. Chang, and S. C. Lee, Appl. Surf. Sci. 92, 70 (1996).
[26] Shiang-Feng Tang, Shih-Yen Lin, and Si-Chen Lee, Appl. Phys. Lett. 78, 2428 (2001).
[27] Shih-Yen Lin, Yau-Ren Tsai, and Si-Chen Lee, Appl. Phys. Lett. 78, 2784 (2001).
[28] J. D. Phillips, J. Appl. Phys. 91, 4590 (2002).
[29] F. Y. Chang, C. C. Wu, and H. H. Lin, Appl. Phys. Lett. 82, 4477 (2003).
[30] H. Petterson, L. Baath, N. Carlsson, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 79, 78 (2001).
[31] Zhonghui Chen, Eui-Tae Kim, and Anupam Madhukar, Appl. Phys. Lett. 80, 2490 (2002).
[32] Eui-Tae Kim, Zhonghui Chen, Max Ho, and Anupam Madhukar, J. Vac. Sci. Technol. B, 20, 1188 (2002).
[33] S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, A. G. U. Perera, Appl. Phys. Lett. 83, 2745 (2003).
[34] S. Kaiser, T. Mensing, L. Worschech, F. Klopf, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 81, 4898 (2002).
[35] Lin Jiang, Sheng S. Li, Nien-Tze Yeh, Jen-Inn Chyi, C. E. Ross, and K. S. Jones Appl. Phys. Lett. 82, 1986 (2003)
[36] S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, Appl. Phys. Lett. 78, 1023 (2001)
[37] Shiang-Feng Tang, Shih-Yen Lin, and Si-Chen Lee, Appl. Phys. Lett. 78, 2428 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔