(18.206.187.91) 您好!臺灣時間:2021/05/19 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王自豪
研究生(外文):Chih-Haw Wang
論文名稱:平行平板光子晶體結構耦合行為之模擬研究
論文名稱(外文):Simulation study on the coupling behaviors of parallel photonic crystal slab structures
指導教授:楊志忠楊志忠引用關係
指導教授(外文):Chih-Chung Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:87
中文關鍵詞:光子晶體缺陷共振腔濾波器線缺陷波導垂直耦合
外文關鍵詞:photonic crystaldefect cavitychannel drop filtervertical couplingline-defect waveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去相關的光子晶體平板結構研究中,研究的內容著重於共平面光子晶體缺陷結構之間的相互作用。在本研究中,我們引進了平行光子晶體平板結構之觀念,來探討在全反射與光子晶體侷限效應共同作用下,共平面光子晶體與平行平板光子晶體結構耦合作用之差異。
我們先利用時域有限差分法來獲得單層平板光子晶體缺陷共振腔與線缺陷波導結構之光子帶隙結構,接著我們模擬得到平行平板光子晶體缺陷共振腔之頻率響應,且觀察電磁場在這種光子晶體垂直耦合中的場型與相位分佈,我們並探討耦合係數對於平板結構之間的距離及厚度的影響。
隨後,我們設計了一個由上層的缺陷共振腔與下層的線缺陷波導組成之光子晶體濾波器。我們變化上下兩層結構間的距離與缺陷共振腔之大小以得到濾波效率之變化趨勢。最後我們將所得到的結果與共平面光子晶體濾波器做比較,而發現垂直耦合結構中濾波效率改進了15.07 %,對此,我們提出了兩個可能的機制從事解釋。這種垂直方向濾波器的弁鈺N可應用在分波多工光纖系統中,尤其,當我們想發展三維的光子晶體元件積成時,上述的設計更顯得有用。
In the past research of photonic crystal slab structures, interest has been focused on the interaction between the co-planar photonic crystal defect structures. In this study, we introduce the concept of the coupling photonic crystal slab structures between parallel slabs. With the effect of both total internal reflection and the photonic band gap confinement, the differences between the coupling behaviors of a co-planar photonic crystal structure and a parallel photonic crystal slab structure are investigated.
We first use the FDTD method to evaluate the photonic band gap of the photonic crystal defect cavity and line-defect waveguide. Then, we obtain the frequency responses of the photonic crystal nano-cavities in parallel slabs and then investigate the field intensity and phase distributions. We study the dependence of the coupling coefficient on the slab spacing and slab thickness. Next, we design a structure composed of a defect cavity in the upper layer and a line-defect waveguide in the lower layer for channel dropping filter application. We vary the slab spacing and the size of the defect cavity to obtain the variations of the dropping efficiency. Finally, we compare our results with a co-planar channel dropping filter. We find that the dropping efficiency is improved by 15.07 % in using the vertical coupling scheme. We propose two possible mechanisms for interpreting these results. The operation of such a channel dropping filter should find applications in a WDM fiber communication system, particularly when 3D integration of photonic crystal device is needed.
Contents

Chapter 1: Introduction 1
1.1 General Reviews of Photonic Crystals……………….1
1.2 Reviews of Photonic Crystal Defect Cavities and Co-planar Coupled Cavities………………………….2
1.3 Reviews of Photonic Crystal Waveguides and Co-planar Channel Drop Filters……………………...5
1.4 Numerical Analysis Method: The Finite-Difference Time-Domain Method………………………………..7
1.5 Research Motivations……………………………….13
1.6 Structure of the Thesis………………………………14

Chapter 2: Coupling Behaviors between Photonic Crystal Nano-cavities in Parallel Slabs
…………………………………………31
2.1 Characteristics of Single Photonic Crystal Defect Cavity ………………………………………………31
2.2 Structure of Photonic Crystal Nano-cavities in Parallel Slabs………………………………………………...33
2.3 Numerical Results of Symmetric Structures………..34
2.4 Numerical Results of Asymmetric Structures………36

Chapter 3: Coupling Behaviors between Photonic Crystal Defect Cavities and Line-Defect Waveguides in parallel Slabs………...54
3.1 Characteristics of Photonic Crystal Line-Defect Waveguides…………………………………………54
3.2 Photonic Crystal Defect Cavities and Line-Defect Waveguides in Parallel Slabs……………………….57
3.3 Comparison with the Co-planar Photonic Crystal Slab Structures…………………………………………...62

Chapter 4: Conclusions……………………………..82

References…………………………………………...84
References

[1] Eli Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059(1987).
[2] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., 58, 2486 (1987).
[3] C. M. Soukoulis, “Photonic crystals and light localization in the 21st century,”.
[4] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, ”Two-dimensional photonic band gap defect mode laser,” Science 284, 1819(1999).
[5] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett., 78, 3294(1997).
[6] H. Ichikawa, and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett., 87,457(2004).
[7] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, ”Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274(1998).
[8] Y. Akahane, T. Asano, B. S. Song, and S. Noda, “ Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., 83,1512(2003).
[9] C. S. Kee, H. Lim, and J. Lee, “Coupling characteristics of localized photons in two-dimensional photonic crystals,” Phys. Rev. B., 67, 073103(2003).
[10] Y. Sugimoto, S. Lan, S. Nishikawa, N. Ikeda, H. Ishikawa, and K. Asakawa, ” Design and fabrication of impurity band-based photonic crystal waveguides for optical delay lines,” Appl. Phys. Lett., 81,1946(2002).
[11] W. Suh, and S. Fan, ”All-pass transmission or flattop reflection filters using a single photonic cystal slab,” Appl. Phys. Lett., 84,4905(2004).
[12] K. Hosomi, and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron., 38,825(2002).
[13] M. Plihal, and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B., 44, 8565(1991).
[14] W. Axmann, and P. Kuchment, ”An efficient finite element method for computing spectra of photonic and acoustic band gap materials,” J. computational physics, 150, 468(1999).
[15] J. B. Pendry, and A. MacKinnon, ”Calculation of photon dispersion relations,” Phys. Rev. Lett., 69, 2772(1992).
[16] L. C. Botten, ”Photonic band structure calculations using scattering matrices,” Phys. Rev. E, 64, 046603(2001).
[17] C. T. Chan, Q. L. Yu, and K. M. Ho, ”Order-N spectral method for electromagnetic waves,” Phys. Rev. B,51,16635(1995).
[18]宇野亨, 林振華編譯, “電磁場與天線分析 使用時域有限差分法(FDTD),” (全華, 1999).
[19] H. Y. Ryu, J. K. Hwang, and Y. H. Lee, ”The smallest possible whispering –gallery –like mode in the square lattice photonic crystal slab single defect cavity,” IEEE J. Quantum Electron., 39,314(2003)
[20] S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78,3388 (2001).
[21] M. Bayindir, B. Temelkuran, and E. Ozbay, ”Tight-binding description of the coupled defect modes in three-dimensional photonic ctystals,” Phys. Rev. Lett., 84,2140(2000).
[22] A. Chutinan, and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B., 62,4488 (2000).
[23] Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett., 82,1341 (2003).
[24] T. Asano, M. Mochizuki, S. Noda, “ A channel drop filter using a single defect in a 2D photonic crystal slab – defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,” IEEE J. Lightwave Technol., 21,1370(2003).
[25] A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., 79, 2690(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 羅清水(民87b):教師專業成長與教師進修制度-談國小教師在職進修。國教天地,130, 43-48頁。
2. 蔡清田(民88a):九年一貫國民教育課程改革與學校課程發展。載於北縣教育雙月刊,30, 20-27頁。
3. 蔡培村(民84b):中小學教師生涯進階與等級劃分可行性之研究。教育研究資訊,3(4), 54-72頁。
4. 蔡培村(民84a):教師的生涯發展與規劃。載於著者:成人教育與生涯發展, 229-260頁。高雄:麗文文化。
5. 歐用生(民88b):落實學校本位的課程發展。國民教育,39(4), 2-7頁。
6. 歐用生(民88a):從「課程統整」的概念評九年一貫課程。教師天地,101,15-24頁。
7. 歐用生(民83b):國小教師在職進修教育的檢討與改進。高市鐸聲,5(1), 1-6頁。
8. 歐用生(民83a):教師自我成長。國民教育,35(1、2),8-13頁。
9. 黃富順(民85):終生學習的意義、源起、發展、與實施。載於中華民國成人教育學會:終生學習與教育改革,1-32頁。台北:師大書苑。
10. 黃政傑、張嘉育(民88):落實學校本位課程發展。教師天地,103, 6-12頁。
11. 程瑞福(民89):臺灣地區中小學體育教師專業能力之研究。體育學報,28, 123-132頁。
12. 許義雄、葉國樑(民89):健康與體育學習領域的發展與願景。翰林文教雜誌網路版,7。民92年4月12日,取自:http://www.worldone.com.tw/magazine/07/07_05.htm
13. 許義雄、葉國樑(民89):健康與體育領域課程構想與架構。翰林文教雜誌網路版,8。民92年4月12日,取自:http://www.worldone.com.tw/magazine/08/08_05.htm
14. 許義雄、葉國樑(民89):健康與體育領域之教師專業成長。翰林文教雜誌網路版,13。民92年4月12日,取自:http://www.worldone.com.tw/magazine/13/13_06.htm
15. 張清濱(民85):教師進修-邁向專業化的途徑。研習資訊,13(5)。民90年6月27日,