(3.210.184.142) 您好!臺灣時間:2021/05/09 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳方玉
研究生(外文):Nancy Fang-Yih Chen
論文名稱:適用於乙太網路系統之高效能可適應性回饋等化器設計
論文名稱(外文):High-Performance Adaptive Decision Feedback Equalizer Designs for Ethernet Systems
指導教授:吳安宇吳安宇引用關係
指導教授(外文):An-Yeu Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:80
中文關鍵詞:位元錯誤率回饋等化器謬誤延遲
外文關鍵詞:Bit Error RateDecision Feedback EqualizerError Propagation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著網際網路近年來的蓬勃發展,加上網路多媒體服務的崛起,通訊系統的傳輸頻寬需求也變得越來越高。西元2002年八月,國際電子電機工程師協會(Institute of Electrical and Electronics Engineers) 802.3a工作小組制訂了百億位元乙太網路的10G Base LX4系統的標準規格。當傳輸速度達到每秒百億位元符碼的數量級時,光纖已經不再是過往認定的理想傳輸介質。由於傳統的回饋等化器(Decision Feedback Equalizer)受限於謬誤延遲(Error Propagation),因此無法達到10G Base LX4系統中位元錯誤率(Bit Error Rate)為10-12的標準。為了解決此問題,我們決定採用「軟基準多層級決策可適應性回饋等化器」(Soft-Threshold Multi-layer Adaptive Decision Feedback Equalizer)來降低位元錯誤率,藉以提高系統效能。軟基準多層級決策可適應性回饋等化器不但可提高系統效能,達到所要求之位元錯誤率,並且可降低類比/數位轉化器(Analog/Digital Converter)所需之位元精確度兩位元,降低了高速類比/數位轉化器設計的困難度。我們將軟基準多層級決策可適應性回饋等化器與前端類比等化器整合,亦大量化簡了數位等化器所需之硬體成本。本論文亦對軟基準多層級決策可適應性回饋等化器提出了管線化兩級前看式的超大積體電路設計架構來提昇系統之操作頻率。
As the applications and prevalence of the world wide web (WWW) flourish over the past decade, the demand for higher bandwidth and data rate is skyrocketing. In August 2002, the IEEE 802.3ae task force finalized the 10-Gigabit Base LX4 Ethernet Standard. However, under multi-gigabit data rates, fiber is no longer an ideal transmission medium. This is especially the case for multi-mode fiber (MMF) used in 10G Base LX4 Ethernet systems, because it suffers from differential mode dispersion (DMD). However, conventional adaptive decision feedback equalizers (ADFE) cannot attain the bit error rate (BER) requirement of 10-12 in 10G Base LX4 Ethernet systems, because hard decision of slicers causes error propagation in the feedback loop. Soft threshold multi-layer adaptive decision feedback equalizer (STM-ADFE) designs are adopted to solve this problem. Our system simulation environment includes three representative channel impulses responses, trans-impedance amplifier (TIA), analog equalizer (AEQ), analog/digital converter (ADC), and STM-ADFE. Integration with the analog front end reduces the filter tap numbers needed in STM-ADFE. VLSI architectures of STM-ADFE are also presented. With low hardware overhead, STM-ADFE not only lowers the BER, but also reduces the bit resolution needed in the ADC from 8 to 6.
Abstract I
Table of Contents III
List of Figures V
List of Tables VII
Chapter 1 Introduction 1
1.1 10G Base LX4 System Overview 1
1.2 Motivation and Goal 5
1.3 Thesis Organization 5
Chapter 2 Digital Equalization Techniques for 10G Base LX4 Systems 7
2.1 Introduction to Equalizers Decision Feedback Equalization 7
2.2 Soft-Threshold Multi-layer Adaptive Decision Feedback Equalizer 10
2.2.1 Maximum a Posteriori Probability Detection 11
2.2.2 Determination of Threshold Value 13
2.2.3 Simplified Algorithm for Low Cost Implementation 15
2.3 Summary 16
Chapter 3 Simulation Results of 10G Base LX4 Systems 17
3.1 Simulation Environment 17
3.1.1 Channel Model 17
3.1.2 Analog Equalization in 10G Base LX4 [11] 20
3.2 Parameter Assignment for Soft-Threshold Multi-layer Adaptive Decision Feedback Equalizer 23
3.2.1 Tap Number Determination 23
3.2.2 Floating-Point Analysis 27
3.2.3 Analog/Digital Converter Bit Number Determination 30
3.2.4 Fixed-Point Analysis 32
3.3 Simulation Results 34
3.4 Summary 38
Chapter 4 VLSI Architecture 39
4.1 Soft-Threshold Multi-layer Adaptive Decision Feedback Equalizer VLSI Architecture 39
4.2 Pipelined Soft-Threshold Multi-layer Adaptive Decision Feedback Equalizer 43
4.3 Register Transfer Level Simulation and Synthesis Results 45
Chapter 5 Conclusions 49
5.1 Summary 49
5.2 Future Work 49
Appendix 51
Reference 55
[1]Kamran Azadet Erich F. Haratsch, Helen Kim, et al. “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 317-327, Mar 2002.
[2]Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10Gb/s Operation, IEEE Standard 802.3ae-2002.
[3]Oscar Agazzi, et al., DSP-Based Equalization for Optical Channels, IEEE 802.3ae Meeting, New Orleans, Sept 2000.
[4]Chih-Hsiu Lin and An-Yeu (Andy) Wu, “Robust Decision Feedback Equalization Design Using Soft-Threshold-Based Multi-Layer Detection Scheme”, IEEE Workshop on Signal Processing Systems, Oct. 2004
[5]P. Monsen, “Adaptive equalization of the slow fading channel,” IEEE Trans. Comm., vol. COM-22, pp. 1064-1075, Aug. 1974.
[6]S. Haykin, Adaptive Filter Theory, 2nd Edition, Englewood Cliffs, NJ, Prentice-Hall, 1991.
[7]Simon Haykin, Communication Systems, 4th Edition, John Wiley & Sons, Inc., 2001
[8]M. Chiani, “Introducing erasures in decision-feedback equalization to reduce error propagation“, IEEE Trans. Comm., vol. 45, Issue: 7, pp. 757 -760,July 1997.
[9]F. Zhao, G. Mathew, and B. Farhang-Boroujeny, “Techniques for Minimizing Error Propagation in Decision Feedback Detectors for Recording Channels,” IEEE Trans. Mag., Vol. 37, Issue: 1, pp. 592-602, Jan. 2001.
[10]Oscar Agazzi, et al., Measurements of DMD-Challenged Fibers at 3.125Gb/s, IEEE 802.3ae Meeting, Irvine, Jan 2001
[11]“適用於10GBASE-LX4光纖通訊系統之類比等化器設計” ,陳平, 國立台灣大學電機工程研究所碩士論文,中華民國九十三年七月
[12]M. Tarrab and A. Feuer, “Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data,” IEEE. Trans. Acoust., Speech, Signal Processing, vol. 34, 680-691, July 1988.
[13]S. Koike, “Analysis of adaptive filters using normalized singed regressor LMS algorithm,” IEEE Trans. Signal Processing, vol. 47, pp. 2710-2723, Oct. 1999.
[14]E. Eweda, “Analysis and design of a signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated Gaussian data,” IEEE Trans. Circuits Syst., vol. 37, pp. 1367-1374, Nov. 1990.
[15]D. I. Kim and P. D. Wilde, “Performance Analysis of Singed Self-Orthogonalizing Adaptive Lattice Filter,” IEEE Trans. Circ. Syst. II: Analog and Digital Signal Processing, vol. 47, No. 9, pp. 1227-1237, Oct. 2000.
[16]B. Farhang-Boroujeny, “Fast LMS/Newton algorithms based on autoregressive modeling and their application to acoustic echo cancellation,” IEEE Trans. Signal Processing, vol. 45, pp. 1987-1997, Aug. 1997.
[17]“適用於高速通訊系統的動態必v調節之可適性決策回饋等化器設計”, 王博民,國立台灣大學電子工程研究所碩士論文,中華民國九十二年七月
[18]Oscar Agazzi, ”A Link Model for Equalized Optical Receivers”, IEEE 802.3ae Equalization Ad Hoc, March 11, 2001
[19]Eshraghi, T. Fiez. K. Winter, and T. Fisher, “Design of a new squaring function for the Viterbi algorithm,” IEEE J.Solid-State Circuits, vol. 29, pp. 1102-1107, Sep. 1994.
[20]A. Hiasat and A. S. Abdel-Aty-Zohdy, “ Combinational logic approach for implementing an improved approximate squaring function,” IEEE J. Solid-State Circuits, vol. 34 pp. 236-240, Feb. 1999.
[21]K. K. Parhi, VLSI Digital Signal Processing System, Wiley-Interscience, 1999.
[22] “適用於十億位元乙太網路的可調適性決定回饋等化器之高效率超大型積體電路設計,”楊孟達,國立台灣大學電機工程研究所碩士論文,中華民國九十一年六月
[23]K. K. Parhi, “Pipelining in algorithm with quantizer loops,” IEEE Trans. Circ. Syst., vol. 38, pp.745-754, July 1991
[24]S. Kasturia and J. H. Winters, “Techniques for high-speed implementation of nonlinear cancellation,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 5, pp. 711-717, June 1991.
[25]Meng-Da yang and An-yeu Wu, “High-performance adaptive decision feedback equalizer based on predictive parallel branch slicer scheme,” Signal Processing Systems 2002, pp.121-126, 2002.
[26]Eshraghi, T. Fiez. K. Winter, and T. Fisher, “Design of a new squaring function for the Viterbi algorithm,” IEEE on J.Solid-State Circuits, vol. 29, pp. 1102-1107, Sep. 1994.
[27]N. R. Shanbhag, K. K. Parhi, “Pipelined adaptive ADFE architectures using relaxed look-ahead,” IEEE Trans. on Signal Processing, vol. 43, No. 6, pp. 1368-1385, June 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔