(3.238.130.97) 您好!臺灣時間:2021/05/18 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈佩玲
研究生(外文):Pei-Ling Shen
論文名稱:適用於第三代行動通訊的三模式維特比/渦輪碼解碼器之超大型積體電路設計
論文名稱(外文):VLSI Design of Convolutional/Turbo Decoder Based on Triple-Mode VA/MAP Kernel for 3rd GPP System
指導教授:吳安宇吳安宇引用關係
指導教授(外文):An-Yeu Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:47
中文關鍵詞:維特比演算法渦輪碼
外文關鍵詞:Turbo CodeViterbi Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,無線通訊的市場蓬勃發展,服務也越來越多元化。對於通訊的需求從原本的通話,增加到資料的傳輸、甚至於多媒體服務。因應不同的傳輸性質、傳輸速率,第三代行動通訊系統制定了兩種錯誤更正碼的編碼方式,分別為迴旋編碼及渦輪編碼。因此,在錯誤更正碼的編/解碼器設計上,便需要兩種不同的理論與架構。一般,在硬體的實現上,最直覺的方法就是為兩種不同的解碼器架構分別設計相對應的硬體來實現其弁遄F然而這樣的作法會有硬體面積高、硬體使用率低,而與行動通訊所強調的“輕巧”相違背。在已發表的研究裡面,少數提出符合第三代行動通訊規範的設計,但也僅止於重新規劃硬體架構。
在我們的研究中,除了利用兩者硬體架構上的相似性作整體架構規劃外,更進一步根據解碼時序的分析,達到系統化降低解碼時間、硬體面積以及硬體使用率的目標。我們的設計特別能有效縮短混合渦輪碼及迴旋碼之資料流的解碼時間。
最後,我們以硬體描述語言撰寫此架構,實現了此適用於第三代行動通訊系統之三模式(迴旋碼,渦輪碼,迴旋碼渦輪碼)通道解碼器的設計,並以0.18um製程實作晶片,在最高的工作時脈100MHz下,固定六次迴圈渦輪碼解碼模式可輸出每秒4.17MHz的資料流。
The needs of 3rd generation mobile communication system (3G) and its multi-media services are growing in the near feature. One of key element in 3G is channel coding. Channel coding minimizes the effects of noise and interference on the transmitted signal at the physical layer. According to the 3rd Generation Partnership Project (3GPP) technical specification two channel coding scheme, turbo code and convolutional code, are applied. Both of these channel coding schemes are typically computationally intensive and power-consuming tasks and is therefore normally implemented in a dedicated hardware block.
In 3G system, the voice and data streams use convolutional and turbo code schemes, respectively. Typically, the corresponding convolutional and turbo code decoder are built separately. In the state of art, dual-mode designs combine hardware of those two decoder. However, there is no combination timing of two algorithms.
The objective of this thesis is based on a methodology of associate timing and hardware in two decoding algorithms, then implement an FEC kernel which complaint with 3Gpp standard. After exploiting the fact that both convolutional and turbo decoders are based on similar trellis decoders, we built both decoding operations in one single architecture to achieve hardware association; besides, we propose a triple-mode (convolutional decoding, turbo decoding and convolutional decoding while turbo decoding) timing charts by complementing idle time of each other. This results in a reduced cost solution through resource sharing. Finally, we implemented this design in Artisan 0.18 cell-library. This FEC kernel run at clock rate equals 100MHz, and decodes a 4.18Mbps turbo encoded data stream with 6 iterations.
List of Table xiv
Chap 1 Introduction 1
1.1 Motivation and Goal 1
1.2 Design Specification 1
Chap 2 Introduction of Viterbi Algorithm 4
2.1 Viterbi Algorithm 4
2.2 Timing Chart of Viterbi Decoding 5
Chap 3 Introduction of MAP Algorithm 9
3.1 MAP Algorithm 9
3.2 Log-MAP algorithm 10
3.3 Timing Chart of MAP decoding 11
Chap 4 Triple-Mode Decoder in Timing and Hardware Analysis 13
4.1 Timing Association and MAP/VA mode 13
4.2 Proposed Architecture of Triple-Mode Kernel 15
4.4.1 Hardware Association 16
4.3 MAP/VA mode 19
4.4 VA Mode 20
4.5 MAP Mode 21
Chap 5 DSP Modules of Triple-Mode MAP/VA kernel 23
5.1 GAMMA/ BM module 23
5.2 Encoder Embedded Trellis Router (EETR) 26
5.2.1 VA Mode 26
5.2.2 MAP Mode 28
5.3 RUA/PM module 30
5.4 Trace Back Unit (TB) 31
Chap 6 Fixed Point Analysis of Log-MAP Decoder 34
6.1 Quantization of Received Bits 34
6.2 Quantization of ?and β 37
6.3 Quantization of Extrinsic Information 38
Chap 7 VLSI Implementation of Triple Mode MAP/Viterbi Decoder 40
7.1 Verification Strategy 40
7.2 Chip Specification and Comparison 41
Chap 8 Conclusion and Future Work 44
8.1 Summary 44
6.4 Future Works 44
Reference 46
[1]3GPP, “Technical Specification Group Radio Access Network: Multiplexing and channel coding (FDD)”, 3GPP TS 25.212 V3.2.0, Match, 2000 (Release 1999)
[2]TIA/EIA/CDMA2000, Physical Layer Standard for CDMA2000 Standards for Spread Spectrum Systems, June ,2000.
[3]M. Bickerstaff et al, “A unified turbo/viterbi channel decoder for 3GPP mobile wireless in 0.18 μm CMOS,” IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. , vol. 1, 2002, pp. 124-451.
[4]Kay Hwang, “VLSI Desgin of Dual-Mode Viterbi/Turbo Decoder for 3rd GPP System” Master Thesis, GIEE, NTU, June, 2003.
[5]Ben-Shin Chen, “Dual-mode Convolutional/Turbo Code Decoder Circuit Design for Wireless Communication Systems”, Master Thesis, GIEE, NTU, June, 2002.
[6]G. Kreiselmaier, T. Vogt. N. Wehn and F. Berens, “Combined Turbo and Convolutional Decoder Architecture for UMTS Wireless Applications,” Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design, 2002.
[7]Fan-Min Li, An-Yeu Wu, Pei-Ling Shen “Unified Convolutional/Turbo Decoder Design Based on Triple-Mode MAP/VA Kernel – Part I: Timing Analysis” in submission to Proc. Eur. Solid Circuits Conf. (ESSCIRC), 2005.
[8]Fan-Min Li, An-Yeu Wu, Pei-Ling Shen “Unified Convolutional/Turbo Decoder Design Based on Triple-Mode MAP/VA Kernel – Part II: System Architecture”, in Submission to Proc. Eur. Solid Circuits Conf. (ESSCIRC), 2005.
[9]A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm,” IEEE Trans. on Information Theory, Vol. IT-13, April 1967, pp. 260-269.
[10]L. Bahl, J, Cocke, F. Jelinck, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284-287, March 1974.
[11]W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data disturbed by time-varying inter-symbol interference,” IEEE Globecom, pp. 1679–1684, Dec. 1990.
[12]J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with parallel structures for ISI channels,” IEEE Trans. Commun., vol. 42, pp. 1661–1671, 1994.
[13]P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. Int. Conf. Communications, June 1995, pp. 1009-1013.
[14]E. Boutillon, W. J. Gross and P. G. Gulak, “VLSI Architectures for the MAP algorithm,” IEEE Trans. on Comm. Vol. 51, NO. 2, Feb. 2003, pp. 175-185.
[15]C. Schurgers, F. Catthoor and M. Engels, “Memory Optimization of MAP Turbo Decoder Algorithm,” IEEE Trans. on VLSI, Vol. 9, NO. 2, Apr. 2001, pp.305-312.
[16]Z. Wang, Z. Chi and K. K. Parhi, “Area –Efficient High-Speed Decoding Schemes for Turbo Decoders,” IEEE Trans. on VLSI, Vol. 10, NO. 6, Dec. 2002, pp. 902-912.
[17]A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269, Apr. 1967.
[18]C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes,” in Proc. ICC, pp. 1064–1070, May 1993.
[19]P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain,” in IEEE Int. conf. on Communications, 1995, pp. 1009–1013.
[20]S.S. Pietrobon, “Implementation and Performance of a TURBO/MAP Decoder,” International Journal of Satellite Communications, vol. 16, 1998, pp. 23–46.
[21]C.B. Shung, P.H. Siegel, G. Ungerboeck, and H.K. Thapar, “VLSI Architectures for Metric Normalization in the Viterbi Algorithm,” in International Conference on Communications, Apr. 1990, pp. 1723–1728.
[22]M. C. Shin and I. C. Park, “A programmable turbo decoder for multiple 3G wireless standards,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, 2003.
[23]J.P Woodard, L. Hanzo, “Comparative study of turbo decoding techniques: an overview”, IEEE Transactions on Vehicular Technology, Vol. 49 Issue 6 , pp. 2208 –2233, Nov. 2000,.
[24]R. Cyper and C. B. Shung, “Generalized trace-back techniques for survivor memory management in the Viterbi algorithm,” Proc. GLOBECOM, vol. 2, pp. 1318–1322, Dec. 1990.
[25]Yun-Nan Chang, Hiroshi Suzuki, and Keshab K. Parhi, “A 2-Mb/s 256-State 10-mW Rate-1/3 Viterbi Decoder” IEEE Journal of Solid-State Circuit, Vol. 35, No. 6, pp.826-pp.834, June 2000,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top