(3.236.118.225) 您好!臺灣時間:2021/05/14 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余其曄
研究生(外文):Chi-Yeh Yu
論文名稱:應用多重輸入多重輸出-正交分頻多工技術之高速無線區域網路基頻收發機設計
論文名稱(外文):MIMO-OFDM Baseband Transceiver Design for High Throughput WLAN
指導教授:闕志達
指導教授(外文):Tzi-Dar Chiueh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:129
中文關鍵詞:通道容量無線區域網路時空編碼多重輸出高速多樣性空間多工傳輸封包格式正交分頻多工收發機架構多重輸入
外文關鍵詞:channel capacityOFDMMIMOLANHigh ThroughputSpatial MultiplexingTransceiver architectureSpace-Time codePacket format802.11npre802.11ndiversityWireless
相關次數:
  • 被引用被引用:1
  • 點閱點閱:305
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
下世代無線區域網路將提供多樣化的多媒體服務,包括高畫質電視(High Definition TV, HDTV)、網路互動式遊戲(interactive gaming)等。欲達成這些目標,我們必須在有限的頻寬內追求更高的傳輸速度( throughput )以及更穩定的傳輸品質( QOS )。在一般無線通訊通道的非平坦衰減下,應用多重輸出多重輸出-正交分頻多工技術( MIMO-OFDM )可以有效提升通道容量,且提供空間多樣性,因此非常具有潛力成為關鍵技術。
本篇論文的重點就是提出一個高傳輸速度的2x2 MIMO-OFDM基頻收發機,以適用於未來的高速無線區域網路。我們依據IEEE 802.11 TGn的功能要求,提出了實體層的OFDM參數以及速度參數,並設計一封包格式利於接收機的同步及通道估計運作。接收機的主要架構分為同步、通道估計以及資料回復。其中同步是藉由前置碼與領航碼來達成,執行工作包括有封包偵測、符元邊界的粗調與細調、分數載波頻率偏移的估計與重估計、殘餘分數載波頻率偏移以及殘餘取樣時間偏移的聯合估計並追蹤。而通道估計是利用低複雜度的線性組合來進行最小方差估計,且在低訊噪比的情況可以配合頻域平均來提升估計表現。資料回復會選擇不同的等化演算法,分別因應MIMO傳輸方式為2x2 VBLAST或是2x2 STBC。之後再透過偵測、反交錯、外部解碼以及反攪亂來計算封包錯誤率。另外,在最高速度模式中,系統可以對資料進行空間、時域及頻域上展開,增加多樣性來提升系統表現。最後,我們藉由相關性衰減的MIMO通道,加上各種不完美效應,來模擬系統表現。在兩倍的IEEE 802.11a傳輸速度下,我們提出並比較封包錯誤率0.1所需操作的訊噪比。
Due to increasing demand on new multimedia application, such as HDTV and interactive gaming, next generation wireless LAN will focus on high throughput and QOS within limited bandwidth. Multiple-input multiple-output (MIMO) signal pro- cessing techniques combined with orthogonal frequency division multiplexing (OFDM) can provide a high throughput link as well as an increased diversity gain in frequency selective fading channels, and is therefore regarded as a promising solu- tion in the future IEEE 802.11n standard for high throughput wireless LAN.
In the thesis, we propose a MIMO-OFDM baseband transceiver design using two transmit antennas and two receive antennas for high throughput wireless LAN. According to the functional requirement of backward compatibility by IEEE 802.11 TGn, we set the OFDM parameters to be same with the IEEE 802.11a standard. Moreover, we design a packet format suitable for receiver algorithms such as timing synchronization, frequency synchronization, and channel estimation. A MIMO- OFDM receiver is accordingly designed and implemented in cycle-based C code with complete algorithms including initial synchronization, tracking, channel esti- mation, and MIMO equalization. Finally, we use IEEE 802.11 TGn channel model D to simulate the correltated fading channel. Under different kinds of channel impairments such as PA non-linearity, carrier frequency offset, phase noise, I/Q imbalance, timing offset and DC offset, simulation results verify the desired signal to noise ratio for the proposed receiver to attain double transmission rate of the current IEEE 802.11a wireless LAN standard.
目錄 i
圖示列表 v
表格列表 ix
第一章 緒論 1
1.1 動機 1
1.2 高速無線區域網路(high throughput wireless LAN)簡介 2
1.3 論文組織 7
第二章 多重輸入多重輸出-正交分頻多工技術 9
2.1 多重輸入多重輸出技術(MIMO) 9
2.1.1 訊號模型 10
2.1.2 通道容量(channel capacity) 11
2.1.3 空間多樣性(space diversity) 12
2.1.4 空間多工傳輸(spatial multiplexing)與時空編碼(space-time code) 14
2.2 正交分頻多工技術(OFDM) 15
2.2.1 調變技術 15
2.3 多重輸入多重輸出-正交分頻多工技術(MIMO-OFDM) 17
第三章 多重輸入多重輸出通道模型 21
3.1 單一輸入單一輸出通道 21
3.1.1 功率放大器非線性效應(power amplifier nonlineariy) 24
3.1.2 功率延遲分布(power delay profile) 27
3.1.3 多路徑瑞雷衰減(Rayleigh fading) 29
3.1.4 白色雜訊(AWGN) 32
3.1.5 載波頻率偏移(carrier frequency offset) 32
3.1.6 相位雜訊(phase noise) 33
3.1.7 實虛部非對稱效應(I/Q imbalance) 35
3.1.8 直流準位偏移(DC offset) 39
3.1.9 取樣時間偏移(timing offset) 39
3.2 多重輸入多重輸出通道 41
3.2.1 功率收發方位角機率分布(power angular spectrum, PAS)、平均入射角(mean angle of arrival, mean AOA)、平均發射角(mean angle of departure, mean AOD)與方位角散開程度(angular spread, AS) 42
3.2.2 通道衰減之相關性(correlation) 44
3.2.3 摘要(summary) 48
第四章 多重輸入多重輸出-正交分頻多工傳送機 49
4.1 系統規格 49
4.1.1 IEEE 802.11n功能要求(functional requirement) 50
4.1.2 實體層(physical layer)參數設定 52
4.1.3 封包格式之設計 55
4.2 傳送機架構 58
4.2.1 攪亂器(scrambler) 59
4.2.2 迴旋編碼(convolutional coding) 59
4.2.3 交錯器(interleaver) 60
4.2.4 星座圖對應(constellation mapping) 63
4.2.5 空間、時間及頻域展開(space time frequency spreading) 64
4.2.6 多重輸入多重輸出訊號處理(MIMO signal processing) 64
4.2.7 正交分頻多工調變(OFDM modulation) 65
4.2.8 OFDM符元波形平滑化(symbol wave shaping) 67
4.2.9 輸出功率頻譜分析(transmit power spectrum analysis) 68
第五章 多重輸入多重輸出-正交分頻多工接收機 71
5.1 接收機架構設計 72
5.2 封包偵測(packet detection) 74
5.3 初始同步估測(synchronization for acquisition) 76
5.3.1 符元邊界粗調(coarse symbol boundary detection) 79
5.3.2 分數載波頻率偏移估計(fractional CFO estimation) 81
5.3.3 符元邊界細調(fine symbol boundary detection) 84
5.3.4 長前置碼之分數載波頻率偏移重估計(long preamble fractional CFO re-estimation) 86
5.4 追蹤迴路(tracking loop) 87
5.4.1 聯合加權最小方差估測器(joint weight least square estimator) 89
5.4.2 迴路濾波器(loop filter) 94
5.4.3 追蹤迴路之補償與表現分析 95
5.5 快速傅立葉轉換(FFT) 98
5.6 多重輸入多重輸出通道估計(MIMO channel estimation) 100
5.6.1 最小方差通道估測(least square channel estimation) 103
5.6.2 通道之頻域濾波(frequency domain filtering) 104
5.7 等化與偵測(equalization and detection) 105
5.7.1 縱向–貝爾實驗室多層時空編碼(Vertical Bell Laboratories Layered Space-Time architecture) 105
5.7.2 時空區塊編碼(space-time block code) 108
5.8 系統表現模擬 110
5.8.1 封包錯誤率(packet error rate)之表現比較 111
5.8.2 使用空間、時間及頻域展開(spreading)之表現 111
5.8.3 訊噪比估測器之表現 111
5.8.4 強制歸零(zero-forcing)與最小均方誤差(MMSE)等化器之表現比較 113
5.8.5 不同大小之同步偏移量補償結果比較 113
5.8.5 通道不完美效應之表現比較 115
第六章 結論與展望 121
參考資料 123
[1.1] IEEE 802 11-02/799r6, Five Criteria
[1.2] http://www.bbwexchange.com/publications/newswires/page546-716790.asp
[1.3] IEEE 802.11, IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997
[1.4] ETSI, “Broadband Radio Access Networks (BRAN): HIPERLAN Type 2 Technical Specification Part 1-Physical Layer,” DTS/BRAN030003-1, Oct. 1999
[1.5] http://snrc.stanford.edu/events/industry-seminar/ spring03/slides/taekon.pdf
[1.6] IEEE 802 11-03/813r9 TGn Functional Requirements
[1.7] G.J. Foschini and M.J. Gans, “On the limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, March 1998, pp. 311-335
[2.1] G. J. Foschini and M. J. Gans, “On the limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, March 1998, pp. 311-335.
[2.2] G. L. Stüber, J, R, Barry, S. W. Mclaughlin, Ye Li, M. A. Ingram and T. G. Pratt, “Broadband MIMO-OFDM Wireless Communications,” in Proceedings of the IEEE, pp. 271-294, Feb. 2004
[2.3] David Gesbert, Mansoor Shafi, Da-shan Shiu, Peter J. Smith, and Ayman Naguib, "From Theory to Practice: An Overview of MIMO Space–Time Coded Wireless Systems," JSAC, pp. 281-302, 2003
[2.4] Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S., "Capacity limits of MIMO channels," JSAC, pp.684-702, 2003
[2.5] Siavash M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," JSAC, pp. 1451-1458, 1998
[2.6] P.W. Wolniansky, G.J. Foschini, G.D. Golden and R.A. Valenzuela, ”V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in ISSSE 98, 1998, pp. 295-300
[2.7] Arogyaswami Paulraj, Rohit Nabar and Dhananjay Gore, Introduction to Space-Time Wireless Communications, cambridge 2003
[2.8] Weifeng Su, Zoltan Safar, Masoud Olfat, K. J. Ray Liu, ”Obtaining Full-Diversity Space-Frequency Codes From Space-Time Codes via Mapping,” IEEE transactions on signal processing, pp. 2905-2916, 2003
[2.9] K. Lee and D.Williams, “A Space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE GLOBECOM, vol. 3, 2000, pp. 1473–1477.
[2.10] R. Blum, Y. Li, J.Winters and Q. Yan, “Improved space-time coding for MIMO-OFDM wireless communications,” IEEE Trans. Commun., vol. 49, pp. 1873–1878, Nov. 2001.
[2.11] Y. Gong and K. B. Letaief, “An efficient space-frequency coded wideband OFDM system for wireless communications,” in Proc. IEEE ICC, vol. 1, 2002, pp. 475–479.
[2.12] Z. Hong and B. Hughes, “Robust space-time codes for broadband OFDM systems,” in Proc. IEEE WCNC, vol. 1, 2002, pp. 105–108.
[2.13] H. Bolcskei and A. J. Paulraj, “Space-frequency coded broadband OFDM systems,” in Proc. IEEE WCNC, Sept. 2000, pp. 1–6.
[2.14] H. Bolcskei and A. J. Paulraj, “Space-frequency codes for broadband fading channels,” in Proc. ISIT, Washington, DC, June 24–29, 2001, p. 219.
[2.15] B. Lu and X. Wang, “Space-time code design in OFDM systems,” in Proc. IEEE GLOBECOM, Nov. 2000, pp. 1000–1004.
[2.16] Y. Gong and K. B. Letaief, “Space-frequency-time coded OFDM for broadband wireless communications,” in Proc. IEEE GLOBECOM, San Antonio, TX, Nov. 2001., pp. 519-523
[2.17] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM for high data-rate wireless communication over wideband channels,” in Proc. IEEE VTC, vol. 3, 1998, pp. 2232–2236.
[2.18] Hsin-Yu Kang, Design and Implementation of an MC-CDMA Baseband Transceiver, July, 2003
[3.1] J. Medbo and P. Schramm, “Channel models for HIPERLAN/2,” ETSI/BRAN document no. 3ERI085B.
[3.2] J. Medbo, “Radio wave propagation characteristics at 5 GHz with Modeling suggestions for HIPERLAN/2,” ETSI/BRAN document no. 3ERI074A.
[3.3] A.A.M. Saleh and R.A. Valenzuela, “A statistical model for indoor multipath propagation,” JSAC, vol. 5, 1987, pp. 128-137.
[3.4] Simon R. Saunders, Antennas and Propagation for Wireless Communication Systems, Wiley, 2001
[3.5] IEEE 802 11-03/940r2, TGn Channel Models
[3.6] Byoung-Jo Choi, Ee-Lin Kuan, and L. Hanzo, “Crest-factor study of MC-CDMA and OFDM,” in Proc. of 1999 IEEE 50th Vehicular Technology Conference, vol. 1, 1999, pp. 233-237
[3.7] H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE Trans. Commun., vol. 50, no. 1, pp. 89-101, Jan. 2002
[3.8] IEEE 802 11-03/814r19, TGn Comparison Criteria
[3.9] IEEE 802 11-00/294, Suggested PA Model for 802.11 HRb
[3.10] M. Patzold and F, Laue, “Statistical properties of Jakes’ fading channel simulator,” in Proc. of 1998 IEEE 48th Vehicular Technology Conference, vol. 2, May 1998, pp. 712-718
[3.11] A. N. D’Andrea, V. Lottici, and R. Reggiannini, “Nonlinear predistortion of OFDM signals over frequency-selective fading channels,” IEEE Trans. Commun., vol. 49, no. 5, pp. 837-843, May 2001
[3.12] T. Pollet, M. Van Bladel, and M. Moeneclaey, “BER sensitiviy of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol. 43, pp. 191-193, Feb./March/April 1995
[3.13] E. Costa, S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun., vol. 50, pp. 462-472, March 2002
[3.14] D. Kreb, O. Ziemann, and R. Dietzel, “Electronic simulation of phase noise,” Eur. Trans. Telecommun., vol. 6, pp. 671-674, Nov./Dec. 1995
[3.15] Behzad Razavi, RF Microelectronics, Prentice Hall, 1998
[3.16] Yuchi Chang, Digital I/Q imbalance and DC offset compensation for mobile receivers, 2002
[3.17] L. Schumacher, J.P. Kermoal, F. Frederiksen, K.I. Pedersen, A. Algans, P. Mogensen, "MIMO Channel Characterization,” IST Project IST-1999-11729 METRA Deliverable D2, February 2001. Available at http://www.ist-metra.org/deliverables/AAU-WP2-D2-V1.1.pdf, last visited: August 14th, 2003
[3.18] H. Yoshida, H. Tsurumi, Y. Suzuki, “DC offset canceller in a direct conversion receiver for QPSK signal reception,” in Proc. of IEEE PIMRC, Boston, MA, USA, Sep. 1998, pp. 1314-1318
[3.19] Q.H. Spencer, et. al., “Modeling the statistical time and angle of arrival characteristics of an indoor environment,” JSAC., vol. 18, no. 3, pp. 347-360, March 2000
[3.20] L. Schumacher “Matlab program,” contact Laurent Schumacher at lsc@info.fundp.ac.be
[3.22] Hsin-Yu Kang, Design and Implementation of an MC-CDMA Baseband Transceiver, July, 2003
[4.1] IEEE 802.11-03/802r12 Usage Models
[4.2] Siavash M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," JSAC, pp. 1451-1458, 1998
[4.3] P.W. Wolniansky, G.J. Foschini, G.D. Golden and R.A. Valenzuela, ”V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in 1998 URSI International Symposium on Signals, Systems, and Electronics, Sept.-2 Oct. 1998, pp. 295-300
[4.4] A. N. Mody and G. L.Stüber, “Parameter Estimation for OFDM with Transmit Receive Diversity,” VTC2001, Rhodes, Greece, pp. 820-824
[4.5] Ho Jin (Samsung), “High-Throughput MAC Enhancement via DLP and Multi-Channel,” IEEE 802.11-03/451r0
[4.6] Babak Hassibi, “An Efficient Square-Root Algorithm for BLAST,” 2000 ICASSP, June 2000, II737-II740
[4.7] Alexander Dias (Motorola Labs), “Multiple Antenna OFDM solutions for enhanced PHY,” IEEE 802.11-04/229r1
[4.8] IEEE 802 11-02/799r6, Five Criteria
[4.9] IEEE 802.11, IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997
[4.10] IEEE 802 11-03/940r2, TGn Channel Models
[4.11] IEEE 802 11-03/813r9 TGn Functional Requirements
[4.12] IEEE 802 11-03/814r19, TGn Comparison Criteria
[4.13] IEEE 802.11-02/798r7 Project Authorization Request
[4.14] Yusuki Asai (NTT), “Number of MIMO Multiplex for 802.11n Standards,” IEEE 802.11-04/259r1
[5.1] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Transactions on Communications, pp.1613-1621, Dec. 1997
[5.2] P. Y. Tsai, H. Y. Kang, and T. D. Chiueh, “Joint weighted least squares estimation of frequency and timing offset for OFDM systems over fading channels,” in Proc. of 2003 IEEE 57th Vehicular Technology Conference, 2003, pp. 2543-2547
[5.3] Yuchi Chang, Digital I/Q imbalance and DC offset compensation for mobile receivers, 2002
[5.4] Shoushen He and Mats Torkelson, “A new approach to pipeline fft processor,” in Proc. of IPPS’96, 1996, pp. 766-770
[5.5] C. C. Chong, D. I. Laurenson and S. Mclaughlin, “Initial modelling of the wideband dynamic directional indoor propagation channel,” available at http://www.see.ed.ac.uk/~ccc/IEESpectrum02.pdf, last visited June, 2004
[5.6] Chung-Jr Jan, Design and Implementation of Baseband Space Diversity Receiver for IEEE 802.11a
[5.7] Hsin-Yu Kang, Design and Implementation of an MC-CDMA Baseband Transceiver, July, 2003
[5.8] IEEE 802 11-03/940r2, TGn Channel Models
[5.9] IEEE 802 11-03/814r19, TGn Comparison Criteria
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔