(3.238.96.184) 您好!臺灣時間:2021/05/13 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威盛
研究生(外文):Wei-Sheng Chen
論文名稱:寬頻放大器及自動增益調整迴路
論文名稱(外文):Wideband Amplifier and Automatic Gain Control Amplifier
指導教授:劉深淵
指導教授(外文):Shen-Iuan Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:70
中文關鍵詞:放大器自動增益調整寬頻
外文關鍵詞:widebandamplifierAGC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主題在於使用標準互補式金氧半製程,實現一個低功率消耗的寬頻放大器。此放大器架構亦被用來建構兩個不同用途的寬頻放大器。論文內容可分三大主題,分別為無線通訊/光通訊前端的原理介紹、一個可達到寬頻操作的放大器架構、及以此架構完成適用於UWB系統的帶通放大器和適用於光通訊前端接收的自動增益調整放大器。

接收器前端的基本原理部分,分別介紹了光通訊及UWB無線通訊的概念,及此兩種系統所須要的參數。

之後,會先介紹一個新架構的7.5GHz寬頻放大器及其用來提升頻寬的原理。接下來利用此放大器實現一個UWB的前端放大器。這個UWB放大器有20dB的電壓增益及可調增益範圍,並且經過量測,-10dB頻寬可以從1.8GHz到8.8GHz,只消耗了40mW的電力。

最後的主題為,自動可變增益放大器(AGC)的架構及運作原理。依照現有的理論,及使用之前提出的寬頻放大器結構,建構了一個AGC迴路。並且介紹了相關的數學模型及設計實例。最後,用CMOS製程實現了一個6.5GB/S頻寬的AGC迴路,並附上其量測結果。
The goal of this work is to use a standard CMOS process to construct a wideband amplifier with low power consumption. And two applications of this wideband amplifier are presented. This thesis covers three major topics. First, the fundamental theories of wireless/optical communication systems are introduced. Then a wideband amplifier structure is proposed. Finally, a UWB amplifier and a AGC amplifier built by the proposed wideband amplifier are discussed.

Some important fundamental theories of wireless/optical receiver front-end are reviewed. Some essential circuit parameters are also introduced.

Then, we would show the design of a 7.5 GHz wideband amplifier and its bandwidth improving technique. Then this amplifier is used to construct a UWB front-end wideband amplifier of 20dB gain tuning range, 1.8 – 8.8 GHz measured bandwidth, and 40mW power consumption.

At last, the principles and architectures of the automatic gain control are discussed. With discussing the typical structures and existing solutions of AGC circuits, an AGC is composed. Complete mathematical analysis both in time and frequency domains will be introduced. And a 6.5 Gb/s AGC loop has been implemented and experimental results are presented.
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Design Challenges 2
1.3 Thesis Overview 3

Chapter 2 Background and Fundamental Theories 5
2.1 Background 5
2.1.1 Ultra Wideband System 5
2.1.2 Optical Communication 6
2.2 Front-end Amplitude Control Architectures 8
2.2.1 Limiting Amplifier 8
2.2.2 Automatic Gain Control (AGC) Amplifier 12
2.3 Optical Receiver Parameters 15
2.3.1 Sensitivity and Bit Error Rate (BER) 15
2.3.2 Eye Diagram 17
2.4 Wireless Receiver Parameters 18
2.4.1 Linearity 18
2.4.2 Noise Figure 20

Chapter 3 A Wideband Amplifier and
Its Application in UWB Front-End 23
3.1 Motivation 23
3.2 Circuit Architecture and Simulation Result 24
3.3 Measurement of Wideband Amplifier 30
3.4 UWB Amplifier 32

Chapter 4 A 5Gb/s Automatic Gain Control Amplifier 39
4.1 Motivation 39
4.2 AGC Architecture 39
4.2.1 Mathematical Model 40
4.3 System Design and Simulation Result 43
4.3.1 Loop Parameters 43
4.3.2 Building Blocks 45
4.3.3 Simulation Result 48
4.4 Layout and Performance Summary 49
4.5 Measurement Result 49

Chapter 5 Conclusion 65

Bibliography 67
[1]J. Cao, A. Momtaz, K. Vakilian, M. M. Green, D. Chung, K.C. Jen, M. Caresosa, B. Tan, I. Fujimori, and A. Hairapetian, “OC-192 Receiver in Standard 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2002, pp. 250-251.
[2]S. Galal, and B. Razavi, “10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18μm CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2003, pp. 188-189.
[3]P. Choi, H. Park, I. Nam, K. Kang, Y. Ku, S. Shin, S. Park, T. Kim, H. Choi, S. Kim, S. M. Park, M. Kim, S. Park, and K. Lee, “An Experimental Coin-sized Radio for Low Power WPAN (IEEE 802.15.4) Applications at 2.4GHz,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2003, pp. 92-93.
[4]M. Zargari, S. Jen, B. Kaczynski, M. Lee, M. Mack, S. Mehta, S. Mendis, K. Onodera, H. Samavati, W. Si, K. Singh, A. Tabatabaei, M. Terrovitis, D. Weber, D. Su, and B. Wooley, “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g WLAN,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2004, pp. 96-97.
[5]B. Razavi, Design of Integrated Circuits for Optical Communications. McGraw Hill, 2003.
[6]P.C. Huang, Y.H. Chen, and C.K. Wang; “A 2-V 10.7-MHz CMOS limiting amplifier/RSSI,” IEEE J. Solid-State Circuits, Vol. 35, pp. 1474 -1480, Oct. 2000.
[7]C.K. Wang, P.C. Huang, and C.Y. Huang, “A BiCMOS limiting amplifier for SONET OC-3,” IEEE J. Solid-State Circuits, Vol. 31, pp. 1197-1200, Aug 1996.
[8]M. Nakamura, N. Ishihara, Y. Akazawa, and H. Kimura, “An instantaneous response CMOS optical receiver IC with wide dynamic range and extremely high sensitivity using feed-forward auto-bias adjustment,” IEEE J. Solid-State Circuits, Vol. 30, pp. 991-997, Sep. 1995.
[9]J.M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Trans. Circuits Syst. II, Vol. 45, pp. 283 -294, March 1998.
[10]B. Gilbert, “A Precise Four-Quadrant Multiplier with Subnanosecond Response,” IEEE J. Solid-State Circuits, Vol. 3, pp. 365-373, Dec. 1968.
[11]Bellcore, Synchronous Optical Network (SONET) Transport Systems: Common Generic Critiria, Technical Advisory TA-NWT-000253, Sep. 1990.
[12]B. Analui, and A. Hajimiri, “Multi-pole Bandwidth Enhancement Technique for Transimpedance Amplifier,” ESSCIRC 2002, Session C16, pp. 303-306.
[13]T. T. Y. Wong, Fundamentals of Distributed Amplification, Norwood: Artech House, 1993.
[14]S. Galal, and B. Razavi, “10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18um CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2003, pp.188-189.
[15]C.C. Tang, C.H. Wu, and S.I. Liu, "Miniature 3D inductors in standard CMOS process," IEEE J. Solid-State Circuits, vol. 37, pp. 471-480, April 2002.
[16]M. Aiki, “Low-noise Optical Receiver for High-speed Optical Transmission,” IEEE Trans. Electron Dev., vol. ED-32, pp. 2693-2698, Dec. 1985.
[17]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[18]A.K. Petersen, K. Kiziloglu, Y. Ty, F. Williams Jr., and M.R. Sandor, “Front-end CMOS chipset for 10 Gb/s communication,” pp. 93-96, RFIC 2002.
[19]H.H. Kim, S. Chandrasekhar, C.A. Burrus Jr., and J. Bauman, “A Si BiCMOS transimpedance amplifier for 10-Gb/s SONET receiver,” IEEE J. Solid-State Circuits, Vol. 36, pp. 769 -776, May 2001.
[20]J. Lee, S.J. Song, S.M. Park, C.M. Nam, Y.S. Kwon, and H.J. Yoo; “A Multichip on oxide of 1 Gb/s 80 dB fully-differential CMOS transimpedance amplifier for optical interconnect applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2002, pp. 80 -447.
[21]E. Sackinger, and W.C. Fischer, “A 3 GHz, 32 dB CMOS limiting amplifier for SONET OC-48 receivers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2000, pp. 158 -159.
[22]H. Kim, and J. Bauman, “A 12 GHz 30 dB modular BiCMOS limiting amplifier for 10 Gb SONET receiver,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, San Francisco, CA, Feb. 2000, pp. 160 -161.
[23]K. Ohhata, T. Masuda, E. Ohue, and K. Washio, “Design of a 32.7-GHz bandwidth AGC amplifier IC with wide dynamic range implemented in SiGe HBT,” IEEE J. Solid-State Circuits, Vol. 34, pp. 1290 -1297, Sep. 1999.
[24]P.C. Huang, C.Y. Huang, and C.K. Wang; “A 155-MHz BiCMOS automatic gain control amplifier,” IEEE Trans. Circuits Syst. II, Vol. 46, pp. 643 -647, May 1999.
[25]H.Y. Cheung, K.S. Cheung, and J. Lau, “A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering,” in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 4, 2001, pp. 390 -393.
[26]S. Yamashita, S. Ide, K. Mori, A. Hayakawa, N. Ueno, and K. Tanaka, “Novel cell-AGC technique for burst-mode CMOS preamplifier with wide dynamic range and high sensitivity for ATM-PON system,” IEEE J. Solid-State Circuits, Vol. 37, pp. 881 -886, July 2002.
[27]M.C. Ho, K. Guinn, Z. Lao, S. Lee, M. Yu, M.L. Xu, and V. Radisic, K.C. Wang, “43 Gbit/s automatic gain control amplifier based on InP SHBT technology,” Electronics Letters, Vol. 39, pp. 415 -416, March 2003.
[28]S.M. Park, and C. Toumazou, “Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication,” in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 1, 31, 1998, pp. 293 -296.
[29]JJ. Morikuni, and S.M. Kang, “An analysis of inductive peaking in photoreceiver design,” Journal of Lightwave Technology, Vol. 10, pp. 1426 -1437, Oct. 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔