(3.227.0.150) 您好!臺灣時間:2021/05/08 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宗良
研究生(外文):Tsung-Liang Lin
論文名稱:光纖通訊和無線通訊系統前端放大器設計
論文名稱(外文):Design of Front-end Amplifiers of Optical and Wireless Communication Systems
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:67
中文關鍵詞:前端放大器
外文關鍵詞:Front-end Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文的主題是在介紹光纖通訊以及無線通訊系統,並設計其前端放大器。
首先介紹一些之前發表過的文獻和設計動機,還有轉阻放大器及可變增益低雜訊放大器的基本結構。接下來則是此二通訊系統的發射端及接收端各個電路元件的介紹,還有一些基本概念,也討論其運作原理,還有設計時應該考慮的一些參數。雜訊指數的概念在這裡也有被提到。最後是低雜訊放大器的設計步驟。最後一個部分主要是敘述前端放大器之設計,包括轉阻放大器及可變增益低雜訊放大器。在轉阻放大器的設計部份,用到了兩種增加頻寬的方法。此轉阻放大器的增益為53 dBΩ,頻寬為9 GHz。模擬結果和量測結果非常相近。在可變增益低雜訊放大器的設計部份,為了減少晶片面積,在輸入端的匹配電路在晶片外實現。在高增益狀態,量測得到的增益為6 dB,而雜訊指數約為5 dB。在低增益狀態,量測所得到的增益為 –12 dB,雜訊指數為13 dB。
The main topics of this thesis are introducing optical and wireless communication systems and designing the front-end amplifiers of the receivers.
First, the design motivation, the results of paper survey, and brief description of the structures of TIA and VGLNA are introduced. Then introductions of circuit blocks of the transceivers in each communication system and some basic concepts are given. Operation principles, performance parameters and trade offs are discussed. The basic concept of noise figure is also presented. Finally, the design procedures of LNA are given. In the design of the TIA, two bandwidth-enhancing techniques are used. The TIA achieves a gain of 53 dBΩ with a bandwidth of 9 GHz. In the design of the VGLNA, input matching network is implemented off chip to reduce chip area. The measured gain is 6 dB and noise figure is 5 dB in high gain mode. In low gain mode, the measured results shows a gain of –12 dB and a noise figure of 13 dB.
CHAPTER 1.
INTRODUCTION 1
1.1 Motivation 1
1.2 Published Results Survey 2
1.3 The Design of Front-end Amplifiers 4
1.4 Thesis Outline 4
CHAPTER 2.
COMMUNICATION SYSTEMS 6
2.1 Optical Communication System 6
2.1.1 Transmitter 7
2.1.2 Receiver 8
2.1.3 TIA Design 11
2.2 RF Communication System 13
2.2.1 Power Amplifier, Mixer, and Oscillator 14
2.2.2 LNA Design 15
CHAPTER 3.
A 9-GHZ TRANSIMPEDANCE AMPLIFIER USING 0.18-μm CMOS TECHNOLOGY 21
3.1 Basic Structure 21
3.2 Bandwidth-Enhancing Techniques 26
3.2.1 Inductive Peaking 26
3.2.2 Inter-stage Matching 30
3.3 Simulation and Measurement Results 35
3.3.1 Calculating Input-referred Noise Current 35
3.3.2 Measurement Results 37
CHAPTER 4.
A 2.4~2.5 GHz VARIABLE GAIN LNA USING 0.35-μm SiGe TECHNOLOGY 44
4.1 Basic Structure 44
4.2 Design Flow 47
4.3 Simulation and Measurement Results 52
4.3.1 On-wafer Probing Measurement 53
4.3.2 Measurement Results With Off-chip Matching Network 57
CHAPTER 5. CONCLUSIONS 63
REFERENCES 65
[1] Behzad Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2002.

[2] Sudipto Chakraborty, Scott K. Reynolds, Troy Beukema, Herschel Ainspan, and Joy Laskar, “Architectural trade-offs for SiGe BiCMOS direct conversion receiver front-ends for IEEE802.11a”, GaAs IC Symp, pp. 120-123, Oct, 2002.

[3] Xi Li, Tom Brogan, Mark Esposito, Brent Myers, and Kenneth K. O, “A comparison of CMOS and SiGe LNA’s and mixers for wireless LAN application”, IEEE Custom Integrated Circuits Conference, pp. 531-534, May, 2001.

[4] Jung-Hyuck Jo and Nikil Jayant, “Performance evaluation of multiple IEEE 802.11b WLAN stations in the presence of Bluetooth radio interference”, IEEE Communication Conference, vol. 2, pp. 1163-1168, May, 2003.

[5] S. M. Park and C. Papavassiliou, “On the design of low-noise, giga-hertz bandwidth preamplifiers for optical receiver applications,” IEEE ICECS Proceedings, vol. 2, pp. 785-788, Sept. 1999.

[6] S. M. Park and C. Toumazou, “Gigahertz low noise CMOS transimpedance amplifier,” IEEE ISCAS Proceedings, vol. 1, pp. 209-212, June, 1997.

[7] S. M. Park and C. Toumazou, “Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication,” IEEE ISCAS Proceedings, vol. 1, pp. 293-296, 1998.

[8] Ren-Chieh Liu and Huei Wang, “ DC-to-15- and DC-to-30-GHz CMOS distributed transimpedance amplifiers”, to appear in 2004 IEEE RFIC Symp. Dig. Fort Worth, TX USA, June, 2004.

[9] Ville T. S. Vintola, Mikko J. Matilainen, Sami J. K. Kalajo, and Esko A. Järvinen, “Variable-gain power amplifier for mobile WCDMA applications”, IEEE MTT, vol. 49, pp. 2464-2471, Dec. 2001.

[10] Masahiro Muraguchi and Masayoshi Aikawa, “A linear limiter: a 11-GHz monolithic low distortion variable gain amplifier”, IEEE MTT-S Int. Microwave Symp. Dig. vol. 2, pp. 525-528, June, 1991.

[11] Kohroh Kobayashi and Ikuo Mito, “Single frequency and tunable laser diodes.” Lightwave Technology J. vol. 6, pp. 1623-1633, Nov. 1988.

[12] P. Zivojinovic, M. Lescure, and H. Tap-Béteille, “Design and stability analysis of a CMOS feedback laser driver.” IEEE Trans. Instrumentation and Measurement, vol. 53, pp. 102-108, Feb. 2004.

[13] Hisao Shigernatsu, Masaru Sato, Toshihide Suzuki, Tsuyoshi Takahashi, Kenji Imanishi, Naoki Hara, Hiroaki Ohnishi, and Yuu Watanabe, “A 49-GHz preamplifier with a transimpedance gain of 52 dBΩ using InP HEMTs.” IEEE JSSC. vol. 36, pp. 1309-1313, Sep. 2001.

[14] Sherif Galal and Behzad Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology.” IEEE JSSC. vol. 38, pp. 2138-2146, Dec. 2003.

[15] David M. Pozar, Microwave and RF Design of Wireless Systems, Wiley, 2001.

[16] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.

[17] Hisao Shigernatsu, Masaru Sato, Toshihide Suzuki, Tsuyoshi Takahashi, Kenji Imanishi, Naoki Hara, Hiroaki Ohnishi, and Yuu Watanabe, “A 49-GHz preamplifier with a transimpedance gain of 52 dBΩ using InP HEMTs”, IEEE JSSC, vol. 36, pp. 1309-1313, Sep. 2001.

[18] Fabrice Paillet and Tanay Karnik, “Low power and noise tolerant 20 Gb/s CMOS TIA for short-distance optical interconnect”, Southwest Symp. pp. 49-53, Feb. 2003.

[19] Steffen Kudszus, Arvin Shahani, Shanthi Pavan, Derek K. Shaeffer, Maurice Tarsia, “A 46-GHz distributed transimpedance amplifier using SiGe bipolar technology”, IEEE MTT-S Int. Microwave Symp. Dig. vol. 2, pp. 1387-1390,

[20] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, 1998.

[21] Behzad Razavi, RF Microelectronics, Prectice-Hall, 1998.

[22] Fabrice Paillet and Tanay Karnik, “Low power and noise tolerant 20 Gb/s CMOS TIA for short-distance optical interconnect”, Southwest Symp. pp.49-53, Feb. 2003.

[23] S. Pennisi, S. Scaccianoce, and G. Palmisano, “A new design approach for variable-gain low noise amplifiers”, RFIC Symp. pp. 139-142, June, 2000.

[24] Min Lin, Haiyong Wang, Yongming Li, and Hongyi Chen, “A novel CMOS front-end circuit with low power, low noise and variable gain for 5-GHz WLAN applications”, MWSCAS, vol. 2, pp. II-266 – II-269, Aug. 2002.

[25] TSMC 0.35-μm 3P3M SiGe BiCMOS Salicide 3.3V Design Manual, TSMC.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔