(3.238.130.97) 您好!臺灣時間:2021/05/14 19:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建銘
研究生(外文):Jian-Ming Chen
論文名稱:平面式多通道微電極陣列晶片系統之研發
論文名稱(外文):Development of Two Dimensional Multi-Electrode Arrays Chip and System
指導教授:林啟萬林啟萬引用關係
指導教授(外文):Chii-Wann Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:74
中文關鍵詞:多通道微電極陣列氫化非晶形矽微機電光波導量測系統
外文關鍵詞:WaveguideMEMSMeasurement SystemHydrogenated Amorphous SiliconMulti-Electrodes Array
相關次數:
  • 被引用被引用:4
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微機電系統技術研製二維多通道微電極陣列晶片及量測平台之研發;晶片於無塵室內使用標準之光顯影術、化學濕式蝕刻及薄膜沈積技術,晶片包含玻璃基底、鉻與金合金薄膜電極及0.6微米厚度二氧化矽阻絕層,64個微電極以8 × 8矩陣方式排列,大小為40 × 40 �慆2方形,兩電極中心點間距140微米,感測區域為1.02 × 1.02 mm2。晶片夾具由兩片壓克力板與印刷電路板加工品所構成,晶片感測區域所偵測到之電訊號經由晶片夾具傳遞至後端訊號擷取處理系統;類比電路研製包含前級儀表放大器 ( 10倍放大 )、高低通濾波器 ( 截止頻率分別為0.5及100 Hz ) 及後端放大器 ( 50倍放大,可調整 )。最後,以SD rat 心肌細胞與斑馬魚心臟作為晶片及系統之電氣訊號偵測驗證。
本研究目的是為了建立微電極陣列晶片及系統模組,以整合各式以生物為基礎之感測元件於此系統模組內,文中將提出以光波導及非晶形矽薄膜微電極陣列晶片之可行方法,以便將來整合於此系統模組。
In this research, we reported a design and fabrication by using Micro-Electro-Mechanical-System (MEMS) processes of two dimensional planar Multi-Electrode Arrays (MEA) chip and development of measurement system for MEA chip. The MEA chips are fabricated in the clean room using standard photolithography, wet chemical etching and thin film deposition technologies. The chips are composed of a glass substrate, chromium-gold thin film electrodes and a 0.6 �慆 thick silicon dioxide insulation layer. Our 2D planar MEA chips are composed of 64 electrodes arranged in an 8 × 8 matrix. The electrode area is 40 × 40 �慆2, spaced by 200 �慆 in between (center to center), and the total area is 1.02 × 1.02 mm2 in the center of the MEA chips. The MEA chip can then be placed onto the chip holder, which consists of two pieces of acrylic board and printed circuit board. The electrical signal processing hardware system includes an analog circuitry, which is composed an instrumentation amplifier (10x amplification), a band-pass filter (corner frequency are 0.5 and 100 Hz, respectively), a noninverting amplifier (50x amplification, adjustable), and an analog-to-digital converter system with LabVIEW interface. Bio-electrical signals of SD rat cardiac myocytes and tissue strip from the heart of a zebrafish can be successfully detected from this MEA chip and measurement system.

The purpose of this study is to construct a module of the MEA device and attached measurement system, which can be used for several kind of detection components for bio-sensing. To increase the electrode density, we also reported a feasibility study of a novel opto-electronic MEA chip, which is composed of waveguide structure with hydrogenated amorphous silicon. In the future, we expect that this novel MEA chip can integrate into the module described above.
中文摘要 I
ABSTRACT II
圖目錄 VI
表目錄 VIII
第一章 序論 1
1.1 研究背景 1
1.2 研究動機與貢獻 3
1.3 研究演進及論文架構 5
1.3.1 研究演進 5
1.3.2 論文架構 6
第二章 元件設計之材料與方法 8
2.1 製程材料及方法 8
2.1.1 材料 8
2.1.1.1 相關化學原料之配方及孕?9
2.1.1.2 光阻劑及光阻附著劑 10
2.1.2設備與方法 11
2.1.2.1 光微影術 11
2.1.2.3物理薄膜蒸鍍 13
2.1.2.4化學薄膜沈積 14
2.1.2.5蝕刻 15
2.1.2.6 光阻剝落 16
2.2 金屬佈線多通道微電極陣列晶片設計 16
2.2.1晶片規格 17
2.2.1.1多通道微電極陣列之幾何圖樣 17
2.2.1.2 多通道微電極陣列晶片外觀 17
2.2.1.3 製程用遮罩 18
2.2.2 多通道微電極陣列於MEMS之製程 19
2.2.2.1 MEMS製程方法一 19
2.2.2.2 MEMS製程方法二 21
2.2.2.3 兩種製程優劣 23
2.2.3 多通道微電極陣列晶片與外圍電路系統的介面設計 23
2.2.3.1介面的構思 24
2.2.3.2 壓克力板夾具設計 24
2.2.3.3夾具與晶片說明 26
2.3光掃瞄式多通道微電極陣列晶片 27
2.3.1 目的 27
2.3.2 氫化非晶形矽特性 28
2.3.3 光波導設計原則 28
2.3.4光掃瞄式多通道微電極陣列設計 29
2.3.4.1 元件單位結構 29
2.3.4.2 晶片工作原理 30
2.3.4.3 製程方式 31
第三章 元件驗證之實驗設計 34
3.1 電氣訊號擷取與紀錄之硬體研製 34
3.1.1 硬體電路設計 35
3.1.1.2 使用之IC 特性 35
3.1.1.3 電路硬體設計 36
3.1.1.4 電路系統測試 38
3.1.1.5 類比數位轉換器 38
3.1.2 LabVIEW圖形介面記錄程式 38
3.2 金屬佈線多通道微電極陣列晶片電性驗證 39
3.2.1微電極與導線導通驗證 39
3.2.1.1 製程上快速得知蝕刻效能 39
3.2.1.2 直流下驗證 40
3.2.2 多通道微電極陣列於生理水溶液下實驗 41
3.2.2.1 電解質液與參考電極 42
3.2.2.2 微電極陣列模型 43
3.2.2.3 交流訊號實驗設計 44
3.3 光掃瞄式微電極陣列晶片驗證量測 45
3.4 生物樣本製備 46
3.4.1 生物樣本與微電極間關係 46
3.4.2 心臟肌肉細胞之製備及量測方式 47
3.4.3 使用斑馬魚心臟量測之緣由 47
3.4.4 化學刺激之斑馬魚心臟電訊號變化 48
第四章 結果與討論 49
4.1 製程方面 49
4.1.1 微電極陣列晶片完成 49
4.1.2 玻璃基底與二氧化矽蝕刻率 50
4.1.3 製程方式一結果 51
4.1.4 微電極幾何圖形 51
4.1.4表面輪廓量測結果 52
4.2 晶片夾具 54
4.3 類比電路 55
4.3.1 製作電路 55
4.3.2 放大電路測試結果 56
4.3.3 濾波效能 58
4.4 晶片電氣驗證 59
4.4.1 DC 量測結果 59
4.4.2 AC量測結果 61
4.5 生物電氣訊號偵測結果 63
4.5.1 心肌細胞量測結果 63
4.5.2 斑馬魚心臟電氣訊號 66
第五章 結論 70
第六章 展望 72
[1]C. A. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells”, Exp. Cell Res., 74, pp.61-66, 1972.
[2]G. W. Gross, E. Rieske, G. W. Kreutzberg, and A. Meyer, “A new fixed-arraymulti-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro”, Neurosci. Lett., 6, pp.101-105, 1977.
[3]S. Tatic-Lucic, Y. C. Tai, and J. A. Wright, “Silicon-Micromachined Culterued Neuron Probes For In Vivo Studies For Neural Networks”. International Conference on Solid-State Sensors and Actuators: Transducers ‘93, Yokohama, Japan, pp. 943-946, Nov. 1993.
[4]J. Pine, M. Maher, S. Potter, Y. C. Tai, S. Tatic-Lucic, and J. Wright, “A Cultured Neuron Probe”, Proceedings of IEEE-EMBS Annual Meeting, Amsterdam, The Netherlands, paper #421, Nov. 1996.
[5]P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array”, IEEE Trans. Biomed. Eng., 38(8), pp. 758-768 Aug. 1991.
[6]M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices”, Journal of Neuroscience Methods, 114, pp. 135-148, 2002.
[7]P. Thiébaud, N. F. de Rooij, M. Koudelka-Hep, and L. Stoppini, ” Microelectrode Arrays for Electrophysiological Monitoring of Hippocampal Organotypic Slice Cultures”, IEEE Trans. Biomed. Eng., 44(11), pp. 1159-1163, Nov. 1997.
[8]P. Thiébaud, C. Beuret, M. Koudelka-Hep, M. Bove, S. Martinoia, M. Grattarola, H. Jahnsen, R. Rebaudo, M. Balestrino, J. Zimmer, and Y.Dupont, “An array of Pt-tip Microelectrodes for extracellular monitoring of activity of brain slices”, Biosensors & Bioelectronic, 14, pp. 61-65, 1999.
[9]K. Banach, M. D. Halbach, P. Hu, J. Hescheler, and U. Egert, “Development of electrical activity in cardiac myocytes aggregates derived from mouse embryonic stem cells”, Am J. Physiol. Heart Circ. Physiol., 284, pp. H2114–H2123, 2003.
[10]U. Egert, and H. Hämmerle, “Application of the microelectrode-array technology in pharmaceutical drug research”, http://www.brainworks.uni-freiburg.de/projects/mea/index.html.
[11]K. L. Soh, W. P. Kang, J. L. Davidson, Y. M. Wong, A. Wisitsora-at, G. Swain, and D. E. Cliffel, “CVD diamond anisotropic film as electrode for electrochemical sensing”, Sensors and Actuators B, 91, pp. 39-45, 2003.
[12]V. Bucher, M. Schubert, D. Kern, and W. Nisch, “Light-addressed sub-mm electrodes for extracellular recording and stimulation of excitable cells”, Microelectronic Engineering, 57–58, pp. 705–712, 2001.
[13]V. Bucher, J. Brugger, D. Kern, G. M. Kim, M. Schubert, and W. Nisch, “Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells”, Biosensors and Bioelectronics, 16(3), pp. 205–210, May, 2001.
[14]V. Bucher, J. Brugger, D. Kern, G. M. Kim, M. Schubert, and W. Nisch, “Electrical properties of light-addressed sub-mm electrodes fabricated by use of nanostencil-technology”, Microelectronic Engineering, 61-62, pp. 971-980, 2002.
[15]http://www.ayanda-biosys.com/mea_specs.html
[16]D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Silicon”, Appl. Phys. Lett., 32(4)292, Aug. 15, 1977
[17]R. Biswas, I. Kwon, and C. M. Soukoulis, “ Mechanism for the Staebler-Wronski effect in a-Si:H”, Physical Review B, 44(7), pp. 3403-3406, Aug. , 1991.
[18]H. Suzukia, T. Hirakawa, S. Sasaki, and I. Karube, “An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode”, Analytica Chimica Acta, 387, pp. 103-112, Jan, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊