跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃政吉
研究生(外文):Jeng-Ji Huang
論文名稱:改善傳輸控制規約在無線通訊中的效能
論文名稱(外文):Improving the Performance of TCP in Wireless Communications
指導教授:張進福張進福引用關係
指導教授(外文):Jin-Fu Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:85
中文關鍵詞:無線通訊傳輸控制規約
外文關鍵詞:TCPwireless communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於無線通訊系統(wireless system)與網際網路(Internet)的日益普及,使得在設計未來之無線通訊系統時,傳輸控制規約(transmission control protocol,TCP)必須由有線的部分延伸到無線。但相對於有線傳輸而言,無線傳輸有其特殊之問題及限制,例如:傳輸通道之頻寬有限、多路徑衰褪通道、傳輸必v之漏失大及共頻干擾等問題。由於傳輸通道之頻寬有限,無線通道經常成為TCP傳輸路徑上的瓶頸鏈路(bottleneck link);另一方面,由於多路徑衰褪通道、傳輸必v之漏失大及共頻干擾等問題,無線通道上資料傳輸之位元錯誤率(bit error rate),比有線傳輸高出釵h等級(order)。
本論文即針對因通道發生錯誤而影響TCP傳輸效能之問題,根據無線通訊系統之特性,提出一系列方法與對策,以改善TCP傳輸效能。所考慮的環境包含:衛星(satellite)系統、行動電話(cellular)系統、以及無線區域網路(wireless local area network,WLAN)系統等。目前,關於這個問題在文獻中有三個解決方向:
1.分離法(Splitting):本方法把一個TCP連結(connection)在基地台位置分離成兩個部分。其中,一部分位在傳送端與基地台之間,另一部分位在基地台與移動台(mobile host)之間。
2.鏈路層重傳(link-layer retransmission):這個方法在無線鏈路上執行重傳機制,可搭配鏈路層之錯誤更正碼(forward error correction,FEC),以提昇無線通道之傳輸效率。
3.區分法(Differentiation):該方法試圖增強TCP,使其具有判斷封包丟失(packet loss)之原因,以避免發生通道錯誤時,TCP執行不必要的壅塞控制與迴避機制(congestion control and avoidance mechanism)。
針對鏈路層重傳與區分法兩大研究方向,在本文中有詳細深入的討論。除了提出可供改善無線通訊系統TCP傳輸效能的作法之外,並與相關研究逐一比較。本論文主要探討所提出方法之改善成效,使用NS-2 (network simulator)電腦模擬以進行驗證。
本論文共探討五個主題,第一個主題考慮以衛星系統提供上行(forward)路徑結合電話撥接系統提供下行(reverse)路徑所構成的非對稱(asymmetric)網際網路進接系統。我們所提出之方法,會利用電話撥接系統低傳播延遲(propagation delay)之特性,重傳衛星通道上發生傳輸錯誤的資料封包。如此,可有效避免TCP執行不必要的壅塞控制機制,以提昇TCP傳輸效能。
第二個主題探討在行動通訊系統或無線區域網路系統之環境,若使用鏈路層重傳方法,以減輕通道錯誤對於TCP傳輸效能所造成之影響時,會導致發生所謂「假性逾時」(spurious timeout)的問題。針對這個問題,我們提出之作法為—當無線通訊系統之基地台偵測到通道錯誤率增加時,會預先攔截並儲存若干回應封包(acknowledgement,ACK),然後在鏈路層執行重傳錯誤資料封包的過程中,分批釋放這些預先儲存的回應封包,以便適時重設(reset) TCP層之重傳計時器(retransmission timer)。如此,可有效抑制TCP發生假性逾時,以減輕傳輸效能遭受損害。
在第三與第四個主題中,我們檢視所提出之兩種可套用於TCP SACK版本的區分法。所考慮之無線通道環境,包含低傳播延遲之行動通訊系統或無線區域網路系統,以及高傳播延遲之衛星系統。第一種區分法,需要更改網際網路中所有路由器(router),使其新增一個丟棄封包的新法則。儘管藉由這個方法可以大幅度改善無線通訊系統TCP之傳輸效能,所需花費的執行成本是相當昂貴的。相對地,第二種區分法只需更改TCP之傳送端(sender)。但是,該方法所能改善TCP傳輸效能之程度,低於第一種區分法。
在第五個主題中,我們探討行動通訊系統或無線區域網路系統之環境,若使用窺探規約(snoop protocol)之鏈路層重傳技術,以改善無線通訊系統之TCP傳輸效能時,有關基地台內緩衝器管理(buffer management)的問題。強迫式重複回應 (forced duplicate acknowledgement,FDA)機制適用於多個TCP連結同時共用一個使用窺探規約之無線通道時,作為緩衝器管理之方法。然而,我們發現強迫式重複回應機制將無法有效控制TCP SACK版本之資料流。因此,當TCP SACK與Tahoe/Reno版本之資料流同時存在時,會使得無線通道之頻寬發生不公平使用的現象。針對這個問題,我們提出一個增強強迫式重複回應機制的作法,FDA+,以有效控制TCP SACK版本之資料流。如此,公平性之問題可獲得大幅改善。
Growing popularity of both wireless communications and Internet access
have led to that TCP (transmission control protocol) in wireless links
dooms to play an important role in the design of future wireless
communication systems.
Compared to its wireline counterpart, wireless communications has its
own problems and limitations: lacking bandwidth, multipath fading,
propagation loss, cochannel interference, and etc.
Due to that bandwidth is limited, a wireless link is usually the
bottleneck along the transmission path of a TCP connection.
On the other hand, due to multipath fading, propagation loss, and
cochannel interference, the bit error rate of data transmission in a
wireless link is often several orders higher than an optical wireline.

In this study several schemes are proposed to alleviate the performance
degradation of TCP due to channel errors.
The wireless systems considered include satellite, cellular, and
wireless LAN (local area network).
To solve the performance degradation problem of wireless TCP, three
major approaches have been widely discussed in the literature:

1. Splitting: This approach splits a TCP connection into two separate
connections at the base station -- one between the fixed host and the
base station, and the other between the base station and the mobile host.
2. Link-layer retransmission: In this approach, a retransmission
protocol together with FEC (forward error correction) at the data link
layer is employed for the wireless segment.
3. Differentiation: This approach manages to make the TCP sender
capable of telling the cause of a packet loss, in order to prevent TCP
from triggering unnecessary congestion control and avoidance mechanisms
when packet loss is due to wireless channel errors.

Among these approaches, we considered ``link-layer retransmission'' and
``differentiation'' in this study.
We propose schemes that are able to effectively improve the performance
of wireless TCP.
To obtain results, the ns-2 (network simulator) is used as a tool.

Five topics are studied in this thesis.
An asymmetric Internet accessing system consisting of a high speed
satellite link and a slow terrestrial link is considered in the first
problem.
The satellite link is used for forwarding TCP data and the terrestrial
link for returning acknowledgements.
In this environment, a ground retransmission mechanism that takes the
advantage of small latency of the terrestrial connection is proposed
to enhance TCP performance.
The proposed mechanism effectively prevents TCP from triggering
unnecessary fast retransmits, thus achieving a much better throughput
performance than regular TCP.

The second topic deals with the problem of spurious timeouts in the
fully-reliable retransmission mechanism in mobile computing environments.
An ACK buffering method is proposed to effectively suppress the
occurrence of TCP spurious timeouts.
In this method a small number of ACKs are buffered at the base station
prior to the emergence of a bad state period in the wireless channel,
and these ACKs are henceforth released by the base station one at a
time to reset the TCP sender''s retransmission timer.
This effectively prevents TCP from spurious timeouts and alleviates the
performance degradation of TCP.

In the third and the fourth topics, two different differentiation
schemes are proposed for TCP SACK.
In the first differentiation scheme, a support is required at routers
to incorporate a new dropping policy.
Although it significantly improves the performance of TCP SACK over
both low and long delay noisy links, the implementation cost is high.
In contrast, the second differentiation scheme requires only
modification at the TCP sender.
However, the performance gain is lower, compared to the first
differentiation scheme.

The last topic discusses the problem relating to the buffer management
at a base station in a heterogeneous network when Snoop protocol is
used to improve TCP performance over wireless links.
We notice that FDA (forced duplicate acknowledgement), which is an
active flow control scheme proposed to handle the buffer management
when multiple TCP flows share a common wireless link, would fail to
control the flow of TCP SACK, causing the wireless bandwidth to be
unfairly distributed when TCP SACK coexists with Tahoe/Reno.
An improved FDA flow control based on the key features of TCP SACK is
then proposed to solve this problem.
第一章 緒論 1

第二章 在利用衛星作為進接網際網路下傳路徑結合使用地面電話撥接作為反向路徑之系統中使用地面重傳機制以提昇TCP傳輸效能 7

第三章 在行動通訊系統中使用暫存回應封包之機制以提昇TCP傳輸效能 9

第四章 改善TCP SACK於無線通道中傳輸效能之新方法 11

第五章 改良式TCP SACK以提昇無線通道中傳輸效能之新方法 13

第六章 在異質網路中增強強迫式重複回應機制之方法 15

第七章 結論 17

1 Introduction 1
1.1 The Internet and TCP Performance 1
1.2 Wireless Data Communication 2
1.3 TCP Performance in Wireless Systems 3
1.4 Topics to be Addressed in this Thesis 4
1.4.1 A Ground Retransmission Mechanism to
Enhance TCP Performance in Internet
via Satellite 5
1.4.2 An ACK Buffering Method to Improve TCP
Performance in Mobile Computing
Environments 6
1.4.3 A New Method to Improve the Performance of
TCP SACK over Wireless Links 6
1.4.5 FDA+: Enhancement of FDA for Heterogeneous
Networks 6
1.5 Organization of this Thesis 7

2 A Ground Retransmission Mechanism to Enhance
TCP Performance in Internet via Satellite 8
2.1 Introduction 8
2.2 Preliminaries 11
2.2.1 TCP over Satellite 11
2.2.2 Retransmission Mechanisms 12
2.2.3 Baseline Mechanism 15
2.3 Simulation Results and Discussions 16
2.3.1 The CWND Evolution 16
2.3.2 The Throughput Performance 18
2.3.3 Buffer Requirements 22
2.4 Concluding Remarks 24

3 An ACK Buffering Method to Improve TCP
Performance in Mobile Computing Environments 27
3.1 Introduction 27
3.2 Preliminaries 31
3.2.1 The TCP Overview 31
3.2.2 The Retransmission Timer 32
3.3.3 The Spurious Timeout 33
3.3 The ACK Buffering Method 33
3.3.1 The Pre-notice Mechanism 34
3.3.2 The RTT Estimation 35
3.3.3 The ACK Release Process 37
3.3.4 In the Wake of Handoffs 39
3.4 Simulation Results and Discussions 40
3.4.1 The Spurious Timeouts 41
3.4.2 The Throughput Performance 41
3.4.3 The Kq 43
3.4.4 Static RTO 45
3.5 Concluding Remarks 46

4 A New Method to Improve the Performance of TCP
SACK over Wireless Links 47
4.1 Introduction 47
4.2 Backgrounds 49
4.2.1 Related Side-Information Based Works 49
4.2.2 TCP SACK 50
4.3 The Proposed Method 51
4.3.1 Tagged Segments 51
4.3.2 Dropping Policy at Routers 51
4.3.3 Differentiation Rule 52
4.3.4 Reliability of the Proposed Method 53
4.4 Simulation Results and Discussions 55
4.4.1 TCP Connections over Wireless Links 58
4.4.2 TCP Connections over Wireline Links 59
4.5 Concluding Remarks 59

5 An Improved TCP SACK over Wireless Links 61
5.1 Introduction 61
5.2 The Proposed Scheme 62
5.3 Simulation Results and Discussions 64
5.4 Concluding Remarks 67

6 FDA+: Enhancement of FDA for Heterogeneous
Networks 69
6.1 Introduction 69
6.2 FDA+ 71
6.3 Simulation Results and Discussions 74
6.4 Concluding Remarks 76

7 Conclusions 77
[1] Jim W. Roberts, ``Traffic Theory and the Internet,''
{it IEEE Communications Magzine}, pp. 94--99, Jan. 2001.

[2] W. R. Stevens, {it TCP/IP Illustrated--Vol. 1: The
Protocols}, Reading, MA: Addison Wesley, 1994.

[3] Harri Holma and Antti Toskala, {it WCDMA for UMTS:
Radio Access for Third Generation Mobile
Communications}, Reading, MA: John Wiley & Sons, 2000.

[4] Haitao Wu, Yong Peng, Keping Long, Shiduan Cheng, and
Jian Ma, ``Performance of Reliable Transport Protocol
over IEEE 802.11 Wireless LAN: Analysis and
Enhancement,'' {it IEEE Infocom 2002}, pp. 599--607,
2002.

[5] I. Minei and R. Cohen, ``High-Speed Internet Access
Through Unidirectional Geostationary Satellite
Channels,'' {it IEEE J. Select. Areas Commun.}, vol.
17, pp. 345--359, Feb. 1999.

[6] N. K. G. Samaraweera, ``Return Link Optimization for
Internet Service Provision Using DVB-S Networks,'' {it
ACM Comput. Commun. Rev.}, vol. 29, pp. 4--13, July
1999.

[7] Y. Miyake, T. Hasegawa, T. Hasegawa, and T. Kato,
``Acceleration of TCP Throughput over Satellite-based
Internet Access using TCP Gateway,'' {it Proc. of ISCC
2000}, pp. 245--253, 2000.

[8] H. Obata, K. Ishida, J. Funasaka, and K. Amano,
``Evaluation of TCP Performance on Asymmetric
Networks Using Satellite and Terrestrial Links,'' {it
IEICE Trans. on Commun.}, Vol. E84-B, No. 6, June 2001.

[9] H. Balakrishnan, S. Seshan, and R. H. Katz,
``Improving Reliable Transport and Handoff Performance
in Cellular Wireless Networks,'' {it ACM Wireless
Networks}, vol. 1, No. 4, pp. 469--481, Dec. 1995.

[10] J. S. Stadler, ``A Link Layer Protocol for Efficient
Transmission of TCP/IP via Satellite,'' {it IEEE
MILCOM}, vol. 2, pp. 723--727, 1997.

[11] N. Vaidya, M. Mehta, C. Perkins and G. Montenegro,
``Delayed Duplicate Acknowledgements: A TCP-Unaware
Approach to Improve Performance of TCP over
Wireless,'' {it Technical Report 99-003, Computer
Science Dept., Texas A&M University}, Feb. 1999.

[12] B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K.
Pradhan, ``Improving Performance of TCP over
Wireless Networks,'' {it Proc. Int. IEEE Conf.
Distributed Computing Systems}, pp. 365--373, 1997.

[13] V. Jacobson, R. Braden, and D. Borman, ``RFC 1323:
TCP Extensions for High Performance,'' May, 1992.

[14] C. P. Charalambos, V. S. Frost, and J. B. Evans,
``Performance of TCP Extensions on Noisy High BDP
Networks,'' {it IEEE Communication Letters}, vol.
3, No. 10, pp. 294--296, Oct. 1999.

[15] C. Partridge and T. J. Shepard, ``TCP/IP
Performance over Satellite Links,'' {it IEEE
Network}, vol. 11, pp. 44--49, Sep. 1997.

[16] M. Allman, ``A Web Server''s View of the Transport
Layer,'' {it ACM Comput. Commun. Rev.}, vol. 30, no.
5, pp. 10--20, Oct. 2000.

[17] T. R. Henderson and R. H. Katz, ``Transport
Protocols for Internet-Compatible Satellite
Networks,'' {it IEEE J. Select. Areas Commun.}, vol.
17, No. 2, pp. 326--344, Feb. 1999.

[18] M. Zorzi, A. Chockalingam, and R. R. Rao,
``Throughput Analysis of TCP on Channels with
Memory,'' {it IEEE J. Select. Areas Commun.}, vol.
18, No. 7, pp. 1289--1300, July 2000.

[19] R. Ludwig and R. H. Katz, ``The Eifel Algorithm:
Making TCP Robust Against Spurious Retransmissions,''
{it ACM Comput. Commun. Rev.}, vol. 30, no. 1, pp.
30--36, Jan. 2000.

[20] G. Xylomenos, G. C. Polyzos, P. Mahonen and M.
Saaranen, ``TCP Performance Issues over Wireless
Links'' {it IEEE Communications Magazine}, vol. 39,
issue 4, April 2001, pp. 52--58.

[21] R. Caceres and L. Iftode, ``Improving the
Performance of Reliable Transport Protocols in Mobile
Computing Environments,'' {it IEEE J. Select. Areas
Commun.}, vol. 13, no. 5, pp. 850--857, June 1995.

[22] M. Meyer, ``TCP Performance over GPRS,'' {it 1999
IEEE Wireless Communications and Networking
Conference (1999 WCNC)}, pp. 1248--1252, 1999.

[23] F. Khan, S. Kumar, K. Medepalli, and S. Nanda,
``TCP Performance over cdma2000 RLP,'' {it Proc.
IEEE 51st Vehicular Technology Conference (VTC 2000-
Spring)}, vol. 1, pp. 41--45.

[24] A. Chockalingam and G. Bao, ``Performance of TCP/RLP
Protocol Stack on Correlated Fading DS-CDMA Wireless
Links,'' {it IEEE Trans. Vehicular Technology},
vol. 49, no. 1, pp. 28--33, Jan. 2000.

[25] R. Ludwig, ``A Case for Flow-Adaptive Wireless
Links,'' {it University of California at Berkeley,
Technical Report UCB//CSD-99-1053}, May 1999.

[26] R. Ludwig and K. Sklower, ``The Eifel Retransmission
Timer,'' {it ACM Comput. Commun. Rev.}, vol. 30, no.
3, pp. 17--27, July 2000.

[27] K. Ratnam and I. Matta, ``WTCP: An Efficient Mechanism
for Improving TCP Performance over Wireless Links,''
{it Proc. Third IEEE Symposium on Computers and
Communications (ISCC''98)}, pp. 74--78, 1998.

[28] J. W. K. Wong and V. C. M. Leung, ``Improving
End-to-End Performance of TCP Using Link-Layer
Retransmissions over Mobile Internetworks'' {it 1999
IEEE International Conference on Communications
(ICC''99)}, pp. 324--328, 1999.

[29] X. Dong and N. C. Beaulieu, ``Average Level
Crossing Rate and Average Fade Duration of Selection
Diversity,'' {it IEEE Communications Letters}, vol.
5, no. 10, pp. 396--398, Oct. 2001.

[30] I. T. Ming-Chit, D. Jinsong, and W. Wang,
``Improving TCP Performance over Asymmetric
Networks,'' {it ACM Comput. Commun. Rev.}, vol. 30,
no. 3, pp. 45--54, July 2000.

[31] H. Balakrishnan and V. N. Padmanabhan, ``How
Network Asymmetry Affects TCP,'' {it IEEE Commun.
Mag.}, pp. 60--67, Apr. 2001.

[32] G. Huston, ``TCP in a Wireless World,'' {it IEEE
Internet Computing}, pp. 82--84, March/April 2001.

[33] E Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and
R. D. Gitlin, ``AIRMAIL: A Link-layer Protocol for
Wireless Networks,'' {it ACM/Baltzer Wireless
Networks}, vol. 1, pp. 47--60, Feb. 1995.

[34] N. K. G. Samaraweera, ``Non-congestion Packet Loss
Detection for TCP Error Recovery Using Wireless
Links,'' {it IEE Proc.--Commun.}, vol. 146, no. 4,
pp. 222--230, Aug. 1999.

[35] C. Parsa and J. J. Garcia-Luna-Aceves,
``Differentiating Congestion vs. Random Loss: A
Method for Improving TCP Performance over Wireless
Links,'' {it IEEE WCNC 2000}, vol. 1, pp. 90--93,
2000.

[36] R. Ramani and A. Karandikar, ``Explicit Congestion
Notification (ECN) in TCP over Wireless Network,''
{it IEEE International Conference on Personal
Wireless Communications 2000}, pp. 495--499, 2000.

[37] W. Ding and A. Jamalipour, ``A New Explicit Loss
Notification with Acknowledgement for Wireless TCP,''
{it IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, 2001}, vol. 1, pp.
65--69, Sept. 2001.

[38] J. A. Cobb and P. Agrawal, ``Congestion or
Corruption? A Strategy for Efficient Wireless TCP
Sessions,'' {it IEEE Symposium on Computers and
Communications}, pp. 262--268, 1995.

[39] F. Peng, S. Cheng, and J. Ma, ``An Effective Way to
Improve TCP Performance in Wireless/Mobile
Networks,'' {it IEEE/AFCEA EUROCOMM 2000}, pp. 250--
255, 2000.

[40] R. K. Balan, B. P. Lee, K. R. R. Kumar, L. Jacob,
W. K. G. Seah, and A. L. Ananda, ``TCP HACK: TCP
Header Checksum Option to Improve Performance over
Lossy Links,'' {it IEEE Infocom 2001}, pp. 309--318,
2001.

[41] S. Floyd, ``A Report on Recent Developments in TCP
Congestion Control,'' {it IEEE Communications
Magazine}, pp. 84--90, April 2001.

[42] I. F. Akyildiz, G. Morabito, and S. Palazzo,
``TCP-Peach: A New Congestion Control Scheme for
Satellite IP Networks,'' {it IEEE/ACM Trans. on
Networking}, vol. 9, No. 3, pp. 307--321, June 2001.

[43] V. N. Padmanabhan and R. H. Katz, ``TCP Fast Start:
A Technique for Speeding up Web Transfers,'' {it
Proc. IEEE Globecom Internet Mini-Conference}, Nov.
1998.

[44] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi,
and R. Wang, ``TCP Westwood: Bandwidth Estimation for
Enhanced Transport over Wireless Links,'' {it
Proceedings of ACM Mobicom 2001}, pp. 287--297, July,
2001.

[45] S. Floyd and K. Fall, ``Promoting the Use of
End-to-End Congestion Control in the Internet,'' {it
IEEE/ACM Trans. on Networking}, vol. 7, no. 4, pp.
458--472, August, 1999.

[46] K. Ramakrishnan and S. Floyd, ``RFC 2481: A Proposal
to Add Explicit Congestion Notification (ECN) to IP,''
Jun. 1999.

[47] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
``RFC 2018: TCP Selective Acknowledgement Options,''
Oct. 1996.

[48] G. Bianchi, A. Capone, and C. Petrioli, ``Throughput
Analysis of End-to-End Measurement-Based Admission
Control in IP,'' {it Proc. IEEE Infocom}, vol. 3, pp.
1461--1470, March 2000.

[49] R. Goyal, R. Jain, S. Kalyanaraman, S. Fahmy, B.
Vandalore, and X. Cai, ``Selective Acknowledgements
and UBR+ Drop Policies to Improve TCP/UBR Performance
over Terrestrial and Satellite Networks,'' {it ATM
Forum/97-0423}, April 1997.

[50] V. Paxson, ``End-to-end Internet Packet Dynamics,''
Proceedings of SIGCOMM''97, pp. 139--152, 1997.

[51] S. McCanne and S. Floyd, ``ns (network simulator),''
[online]. Available WWW: http://www.isi.edu/nsnam/ns.


[52] M. Gerla, M. Y. Sanadidi, R. Wang, and A. Zanella,
``TCP Westwood: Congestion Window Control Using
Bandwidth Estimation,'' {it IEEE GLOBECOM 2001},
vol.3, pp. 1698--1702, 2001.


[53] Jian-Hao Hu, Gang Feng, and Kwan Lawrence Yeung,
``Hierarchical Cache Design for Enhancing TCP over
Heterogeneous Networks with Wired and Wireless
Links,'' {it IEEE Trans. on Wireless Communications},
vol. 2, No. 2, pp. 205--217, March 2003.

[54] Jian-Hao Hu and Kwan L. Yeung, ``FDA: A Novel Base
Station Flow Control Scheme for TCP over
Heterogeneous Networks,'' {it IEEE INFOCOM 2001},
vol. 1, pp. 142--151, 2001.

[55] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky,
``An Extension to the Selective Acknowledgement
(SACK) Option for TCP,'' RFC 2883, July 2000.

[56] E. Blanton, M. Allman, K. Fall, and L. Wang, ``A
Conservative Selective Acknowledgement (SACK)-based
Loss Recovery Algorithm for TCP,'' RFC 3517, Apr. 2003.

[57] R. Jain, {it The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling.} Reading, MA:
Addison-Wesley, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top