(18.207.253.100) 您好!臺灣時間:2021/05/06 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡嘉峰
研究生(外文):Chia-Feng Tsai
論文名稱:整合設計與控制以提升系統強度及定位精度於平面式磁浮系統
論文名稱(外文):Integrated Design and Control to Improve Robustness and Upgrade Positioning Precesion on a Planar Maglev System
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:117
中文關鍵詞:適應滑差控制精密定位強健磁浮系統
外文關鍵詞:Magnetic levitation systemMaglevAdaptive sliding-mode controllerRobustnessPrecision positioning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據在去年所提出的六自由度平面磁浮定位系統,在這個延續的研究工作中,我們主要的發展的重點在於提升系統的強健度以及定位精度。在機構重新設計的概念中,系統強健度的提升主要為使平台在整個運動過程中都能保有良好的表現而不再是只能維持在點對點的良好定位精度的系統表現。除此之外,在發展的過程中,我們仍致力於改良機構設計使其具有可預期長運動行程的能力。而為達成以上的設計目標,首先在磁力的描述上,我們經由考慮位移對磁力的變量來調整磁力描述方程式,並且使用斥力型的磁浮系統取代吸力型的架構以避免吸力型的架構對運動行程產生的限制。最後在量測系統的建構上,我們也引入了相對位置的概念來設計系統的狀態轉換演算法。在這樣的改良設計下,可以使演算法不僅在運算上有較低的複雜度也可以使得系統本身具有自動較準的能力。而在實驗的結果中,我們也將一一呈現這些改良的成果。
According to what we have proposed, the 6-DOF magnetic levitation (Maglev) system, last year, we desire to improve the robustness and upgrade positioning precision in this continuous work. The re-design concept attempts to keep the good performance in the whole journey of moving rather than the point-to-point positioning precision. Furthermore, we endeavor to develop this system with an expectable large moving range. Based on these concepts, first we modify the force model in considering the variation from the displacement to the magnetic forces, and avoid the constraint of the attractive levitation in replacing the repulsive levitation. Finally, we adopt the concept of relative distance to build the measuring system. All of the performance of the improved framework will be demonstrated in the experimental results.
1 Introduction 1
1.1 Motivation 1
1.2 Levitation technology 2
1.2.1 Real levitation 3
1.2.2 Research in magnetic bearing 6
1.2.3 Research in planar positioning system 10
1.2.4 Research in the novel configuration 13
1.2.5 Comparison 15
1.3 Contributions 16
1.4 Thesis organization 17

2 Operation Principle and Force Formulation 19
2.1 Magnetic force characteristics 20
2.2 Expression of magnetic forces and torques 22
2.3 Force model simplification 34
2.3.1 Direct measurement methodology 35
2.3.2 Force model validation 41
2.3.3 Linear formulation 43

3 Design Concepts of the Planar Maglev System 45
3.1 Original system review 46
3.2 Development and improvement 50
3.2.1 Repulsive levitation 50
3.2.2 Noise diminution 56
3.3 Overall mechanical system 59
3.4 Magnet characteristics 60

4 Modeling and Sensing Methodology 64
4.1 Assumptions 65
4.2 Dynamic formulation 66
4.3 Sensing methodology 70
4.3.1 Full attitudes transformation 71
4.3.2 Modified sensing methodology 75
4.4 Discussion 77
4.4.1 Simulation and analysis 79

5 Controller Design and Numerical Simulation 84
5.1 Controller design 85
5.1.1 Sliding surface 87
5.1.2 Controller formulation 87
5.1.3 Stability analysis 90
5.2 Numerical Simulation 92

6 Experimental Results 94
6.1 Experimental Environment 94
6.2 Macro-Motion 95
6.2.1 Regulation response 95
6.2.2 Large-moving range 96
6.2.3 Step-train response 97
6.2.4 Sinusoidal motion 99
6.2.5 Circling motion 100
6.2.6 Rotation tracking around z-axis 101
6.2.7 Payload test 101
6.2.8 Comparison with the robustness 103
6.3 Micro-Motion 104
6.3.1 Micro-step motion 104
6.3.2 Micro-circling motion 104
6.3.3 Rotation tracking around z-axis 105

7 Conclusions 107
Reference 109
Appendix A 114
Appendix B 116
Bibliography
1.Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd Edition, the Johns Hopkins University Press, 1996.
2.Leland B. Jackson, Digital Filters and Signal Processing with MATLAB Exercise, 3rd Edition, 1996.
3.Petros A. Ioannou and Jing Sun, Robust Adaptive Control.
4.Kau, B.C., Automatic Control System, 6th Edition, Prentice Hall, Englewood Cliffs, New Jersey, 1991.
5.Gene F. Franklin, J. David Powell & Michael Workman, Digital Control of Dynamic Systems, 3rd Edition, 1998.
6.Adel S. Sedra and K.C. Smith, Microelectronic Circuits, 4th Edition, New York, Oxford, Oxford University Press, 1998.
7.Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control.

Reference
[1] S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Trans. Cambridge Phil. Soc. 7, 97-112, 1842.
[2] Scientific correspondence, Magnet Levitation at Your Fingertips, NATURE, Macmillan Magazines Ltd, pp. 323-325, Vol. 400, 22 JULY 1999, www.nature.com.
[3] M. D. Simon and A. K. Geim, ‘‘Diamagnetic levitation; flying frogs and floating magnets,’’ J. Appl. Phys., vol. 87, no. 9, pp. 6200–6204, May 2000.
[4] Martin D. Simon, Lee O. Heflinger, Torrance CA, S. L. Ridgway, and Santa Monica CA, “Spin stabilized magnetic levitation,” Published in the American Journal of Physics, April 1997.
[5] Schweitzer G, “Active magnetic bearings—chances and limitations,” International center for magnetic bearings, ETH zurich, CH-8092 Zurich, schweitzer@ifr.mavt.ethz.ch
[6] Y. Oshinoya and T. Shimogo, “Electro-magnetic levitation control of an elastic plate,” in Proc. Maglev ’89, 1989, pp. 435–440.
[7] H. Hayasiya, H. Ohsaki, and E. Masada, “Magnetic levitation control of elastic steel plate for steel making process,” in Proc. ICEE ’95, 1995.
[8]J. Jin, T. C. Yih, T. Higuchi, and J. U. Jeon, “Direct electrostatic levitation and propulsion of silicon wafer,” IEEE Trans. Ind. Applicat., vol. 34, pp. 975–984, 1998.
[9] D.L.Trumper, M.C.Weng, and R. J. Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” in Proc. IEEE CCA-CACSD ’99, 1999, pp. 551–557.
[10] Ming-Chih Weng, Xiaodong Lu, and David L. Trumper, “Vibration control of flexible beams using sensor averaging and actuator averaging methods,” IEEE Trans. On Cont. Sys. Tech., vol. 10, No. 4, JULY 2002.
[11] D. L. Trumper, W, -J. Kim and M. E. Williams, “Design and analysis framework for linear permanent-magnet machines,” IEEE Trans. Ind. Applicat., vol. 32, no. 2, pp. 371-379, March/April 1996.
[12] D. L. Trumper, M. E. Williams, and T. H. Nguyen, “Magnet arrays for synchronous machines,” Proceedings of the IEEE IAS 28th Annual Meeting, pp.216-223, Oct. 1993.
[13] W, -J. Kim, M. T. Berhan, and D. L. Trumper, “Analysis and implementation of a tubular motor with Hal Bach magnet array,” IEEE, 1996.
[14] A. Molenaar, F. Auer, and H.F. van Beek, “Application of magnetic bearing for contactless ultra high precision positioning,” Proceedings of the Fifth International Symposium on Magnetic Bearings, pp. 441–445, 5ISMB, August 1996.
[15] A. Molenaar, E.H. Zaaijer, and H.F. van Beek, “A novel long stroke planar magnetic bearing actuator,” Proceedings of the 4th Int. Conference on Motion and Vibration Control, MoViC''98, August 1998.
[16] A. Molenaar, E.H. Zaaijer, and H.F. van Beek, “A novel low dissipation long stroke planar magnetic suspension and propulsion stage,” Proceedings of the Sixth International Symposium on Magnetic Bearings, pp.650–659, 6ISMB, August 1998.
[17] A. Molenaar, E.H. Zaaijer, and H.F. van Beek, “A novel low long stroke planar magnetic bearing configuration,” Conference Proceedings Actuator 98, pp. 541–544, AXON Technology Consult GmbH, June 1998.
[18] W. -J. Kim, D. L. Trumper, and J. B. Bryan, “Linear-motor-levitated stage for photolithography,” Manuf. Technol.: Ann. CIRP, vol. 46, no.1, pp. 447–450, Oct. 1997.
[19] W. -J. Kim, D. L. Trumper, and J. H. Lang, “Modeling and vector control of planar magnetic levitator,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1254-1262, Nov./Dec. 1998.
[20] W. -J. Kim, “Six-axis nano-positioning with planar magnetic levitation,” IEEE-Nano 2001, 1st IEEE conference on Nanotechnology, Oct. 2001.
[21] W. -J. Kim, D. L. Trumper, “Active multivariable optimal control of a planar magnetic levitator,” Proceedings of the 1997 IEEE International CCA, Oct. 5-7, 1997.
[22] K. Halbach, “Design of permanent multipole magnets with orientaed rare earth cobalt material,” Nucl. Instrum. Methods, vol. 169, no. 1, pp. 1-10, 1980.
[23] W. -J. Kim, Shobhit Verma, and jie Gu, “MagLev 6-DOF stage for nanopositioing,” Proceedings of IMECE’03, 2003 ASME, Nov. 15-21, 2003.
[24] Kwang Suk Jung and Yoon Su Baek, “Study on a novel contact-free planar system using direct drive DC coils and permanent magnets,” IEEE/ASME Trans. Mechatron., vol. 7, no. 2, March 2002
[25] Kwang Suk Jung and Yoon Su Baek, “Contact-free moving-magnet type of micropositioner with optimized specification,” IEEE Trans. Magnetics, vol. 38, no. 3, May 2002.
[26] Ximin Shan, Shih-Kang Kuo, Jihua Zhang, and Chia-Hsiang Menq, “Uulra precision motion control of a multiple degrees of freedom magnetic suspension stage,” IEEE/ASME Trans. Mechatron., vol. 7, no. 1, March 2002.
[27] Ximin Shan and Chia-Hsiang Menq, “Robust disturbance rejection for improved dynamic stiffness of a magnetic suspension stage,” IEEE/ASME Trans. Mechatron., vol. 7, no. 3, Sept. 2002.
[28] Shih-Kang Kuo, Ximin Shan, and Chia-Hsiang Menq, “Large travel ultra precision motion control of a magnetic-suspension stage,” IEEE/ASME Trans. Mechatron., vol. 8, no.3, Sept. 2003.
[29] S. J. Ludwick, D. L. Trumper, and M. L. Holmes, “Modeling and control of a six degree-of-freedom magnetic/fluidic motion control stage,” IEEE Trans. Contr. Syst. Technol., vol. 4, no. 5, Sept. 1996.
[30] M. L. holmes, D. L. Trumper, and R. hocken, “Atomic-scale precision motion control stage (The Angstrom Stage),” CIRP Ann., vol. 44, no. 1, pp. 455-460, 1995.
[31] W. -J. Kim and Himanshu maheshwari, “High-precision control of a maglev linear actuator with nanopositioning capability,” Proceedings of the ACC, may 2002.
[32] Chin E. Lin, H.L. Jou, and Y.R. Sheu. “System Implementation of Measurement and Control for a Magnetic Suspension Wind Tunnel”, IMTC/95, 1995. IEEE Proc. of Integrating Intelligent Instrumentation and Control, pp. 200, April 1995
[33] Eiji Nakamoto, Qing-Ming Chen and Hitoshi Takenuchi. “Electromagnetic and Structure Coupled Finite Element Analysis of Active Control in an Anti-Vibration Device.” IEEE Trans. on Magnetics, Vol. 33, No. 2, March 1997.
[34] Park, Kyihwan, et al. “Magnetic Levitated High Precision Positioning System Based on Antagonistic Mechanism.” IEEE Trans. on Magnetics, Vol. 32, No.1, Jan 1996.
[35] Oh, S.-R.; Thomas J. ”Precision Assembly with a Magnetically Levitated Wrist.” IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, USA, 1993.
[36] P. K. Sinha. “Electromagnetic Suspension: Dynamics and Control.” Peter Peregrinus, London, 1987.
[37] B.V. Jayawant. “Electromagnetic Levitation and Suspension Techniques.” E, Arnold, London, 1981.
[38] Lin, Lih-Chang, Tzyh-Biau Chau. “Feedback Linearization and Fuzzy Control for Conical magnetic Bearings.” IEEE Trans. on Control Systems Technology, Vol. 5, No. 4, July 1997.
[39] Bleuler, Hannes. “A Survey of Magnetic Levitation and Magnetic Bearing Types.” JSME Int. J., Series 3: Vibration, Control Engineering, Engineering for Industry, Vol. 35, No. 3, Sep 1992.
[40] K. Watanabe, et al. “Combination of H∞ and PI Control for an Electro- magnetically Levitated Vibration Isolation System.” Proc. of the IEEE Conf. on Decision and Control, Dec. 1996.
[41] Lex Molenaar, “A novel planar magnetic bearing and motor configuration applied in a positioning stage,” Ph.D thesis, Delft University of Technology, 2000.
[42] R.K.Wangsness, Electromagnetic Fields. New York: Wiley, 1979.
[43] Guang-Ren Duan, Zhan-Yuan Wu, Chris Bingham, and David howe, “Robust magnetic bearing control using stabilizing dynamical compensators,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, Nov./Dec. 2000.
[44] Guang-Ren Duan and David howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 2, March 2003.
[45] Yoonsun Kkim and Youngjin Park, Corrections to “Robust control for linear discrete-time systems with norm-bounded nonlinear uncertainties,” IEEE Trans. Automat. Contr., vol. 48, no. 8, Aug. 2003.
[46] Jeffrey D. Lindlar and Carl R. Knospe, “Feedback linearization of an active magnetic bearing with voltage control,” IEEE Trans. Contr. Syst. Technol., vol. 10, no. 1, Jan. 2002.
[47] Taro Tsujino, ken’ichi Nakashima, and Takao Fujii, “Application of control and closed loop identification to a magnetic levitation system,” AJC, vol. 4, no. 4, pp. 283-296, Dec. 1999.
[48] Yuanqing Xia and Uingmin jia,”Robust sliding-mode control for uncertain time-delay systems: An LMI approach,” IEEE Trans. Automat. Contr., vol. 48, no. 6, June 2003.
[49] Maruicia Torres, Hebertt Sira-Ramirez, and Gerardo Escobar, “Sliding mode nonlinear control of magnetic bearings,” Proceedings of the 1999 IEEE, CCA, USA, Aug. 22-27, 1999.
[50] S.L. Edmonds and J.K. pieper, “Discrete sliding mode control of magnetic bearings,” Proceedings of the 2000 IEEE, CCA, USA, Sept. 25-27, 2000.
[51] Chin-Chung Wang, Mei-Yung Chen, and Li-Chen Fu, ”Adaptive sliding mode controller design of a MagLev guiding system for application in precision positioning,” Proceedings of the ACC, June 2000.
[52] Sung-Kyung Hong and Reza Langari, “Robust Fuzzy control of a magnetic bearing system subject to harmonic disturbances,” IEEE Trans. Contr. Syst. Technol., vol. 8, no. 2, March 2000.
[53] Yeong-Chen Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, July 2001.
[54] Kumpati S. Narendra and Anuradha M. annaswamy, “Robust Adaptive control in the presence of bounded disturbances,” IEEE Trans. Automat. Contr., vol. AC-31, no. 4, April 1986.
[55] Yusheng Liu and Xing-Yuan Li, “Robust adaptive control of nonlinear systems represented by imput- output models,” IEEE Trans. Automat. Contr., vol. 48, no. 6, June 2003.
[56] Zhihua Qu, “Adaptive and robust controls of uncertain systems with nonlinear parameterization,” IEEE Trans. Automat. Contr., vol. 48, no. 10, Oct. 2003.
[57] Shuzhi Sam Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” IEEE Trans. Automat. Contr., vol. 48, no. 8, Aug. 2003.
[58] Milliam E. Hopkins, JP., comments on “Robust jump linear quadratic control a mode stabilizing solution,” IEEE Trans. Automat. Contr., vol. AC-31, no. 11, Nov. 1986.
[59] Ki-Seok and Youdan Kim, “Robust backstepping control for slew maneuver using nonlinear tracking function,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 6, Nov. 2003.
[60] Rong-Jong Wai and Jia-Ming Chang, “Implementation of robust wavelet-nerual-network sliding-mode control for induction servo motor drive,” IEEE Trans. Ind. Electron., vol. 50, no. 6, Dec. 2003.
[61] Oui-serg Kim, Sang-Ho Lee, and Dong-Chul Han, “Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing,” IEEE Trans. Ind. Electron., vol. 50, no. 2,April 2003.
[62] N. Harris Mcclamroch, and Ilya Kolmanovsky, “Performance benefits of hybrid control design for linear and nonlinear systems,” Proceedings of the IEEE, vol. 88, No. 7, July 2000.
[63] 吳坤男. “Integrated Design and Control of a Magnetically Levitated Guiding System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1997.
[64] 王銘智, “Model and Controller Design of a Maglev Guiding System for Application in Precision Positioning.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1998
[65] 黃心威, “Modeling and Controller Design of a Dual-Axis Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1999.
[66] 王晉中, “A Dual-Axis Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2000.
[67] 頂吤? “Design and Control of a Novel Planar MagLev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2001.
[68] 林佐柏, “Design, Control, and Experiment of a Novel Planar Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔