跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉珀瑋
研究生(外文):Po-Wei Liu
論文名稱:以固態源分子束磊晶法成長含銻化合物半導體材料與元件
論文名稱(外文):Growth of Sb-containing Compound Semiconductor Materials and Devices by using Solid Source Molecular Beam Epitaxy
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:分子束磊晶銻化鎵含銻化合物半導體銻砷化鎵
外文關鍵詞:GaAsSbGaSbSb-containing compound semiconductormolecular beam epitaxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文中研究以固態源分子束磊晶法成長含銻化合物半導體材料與元件。所研究的材料有銻化鎵以及銻砷化鎵/砷化鎵量子井。
在銻化鎵材料的成長方面,使用Applied-EPI Model 175 Standard Cracker for Sb為銻源,在砷化鎵和銻化鎵基板上成長銻化鎵磊晶層。研究銻化鎵磊晶層的成長條件,包括Sb cracker裂解區溫度,成長溫度,Sb/Ga BEP ratio等條件。並成它a成長出銻化鎵磊晶層,以最佳條件成長在銻化鎵基板上的銻化鎵磊晶層其低溫光激螢光譜可解析出自由激子的放光,顯示了磊晶品質的優良。
在銻砷化鎵/砷化鎵量子井的成長方面,嘗試在砷化鎵基板上成長銻砷化鎵/砷化鎵量子井。以固定As/Ga ratio而改變Sb/Ga ratio來控制量子井中銻砷化鎵的成分。成長出的量子井具有良好的光激螢光強度,並證實了其應用在1.3um波段的可行性。之後並且研究了銻砷化鎵/砷化鎵異質結構的帶排列形式。藉由簡單的方法求得此第二型量子井的平帶放光能量。並藉由成長砷化鋁鎵/銻砷化鎵第一型量子井比較其放光能量,以同時擬合得到銻砷化鎵的應變能隙以及銻砷化鎵/砷化鎵、砷化鋁鎵/銻砷化鎵的能帶排列。得到GaAs0.7Sb0.3/GaAs的價電帶不連續比值Qv = 1.14 ± 0.03,Al0.3Ga0.7As/GaAs0.7Sb0.3的Qv = 0.79 ± 0.03,而GaAs0.7Sb0.3的應變能隙為1.00 ± 0.01eV。此外,並研究了長晶時不同五族保護下成長中斷對於銻砷化鎵/砷化鎵量子井光學特性的影響。發現以銻作五族保護成長中斷的樣品其光學特性較佳。而在這些介面處以不同五族保護作成長中斷的樣品的變溫與變激發強度的量測中,發現PL peak與PL FWHM分別會有”S-shape”與”inverse-S shape”的變化特性。部分樣品在低溫時隨著雷射激發必v的增加,其PL FWHM會有變小的現象。這些現象的原因可能來自於局部能階放光與帶間放光的同時存在的影響。銻成分的波動及介面處的不平整可能是局部能階的成因。
在銻砷化鎵/砷化鎵量子井雷射的成長方面,在砷化鎵基板上分別成長了雙量子井與單量子井雷射結構。雙量子井雷射的最低起振電流為210A/cm2,發光波長為1.28um。單量子井雷射的最低起振電流為300A/cm2,發光波長為1.292um。並研究了所成長雷射的量子效率與透明電流密度等特性。銻砷化鎵量子井雷射較差的溫度特性,可能來自於其第二型結構造成較高載子濃度的累積所致。經由研究雷射的自發性放光與電流的特性,發現銻砷化鎵/砷化鎵量子井雷射在室溫時其載子復合機制以放射性復合為主,但到高溫時變成以歐傑復合為主。第二型量子井中較高的載子濃度可能是高溫時歐傑復合速率增加的原因。


In this dissertation, we studied the growth of Sb-containing compound semiconductor materials and devices by using solid source molecular beam epitaxy (SSMBE). GaSb epilayers and GaAsSb/GaAs quantum wells were investigated.
In the study of GaSb epilayer, high quality GaSb epilayers were successfully grown. Free exciton emissions were observed in the low temperature photoluminescence of the GaSb epilayers grown with the optimized growth parameters.
On the growth of GaAsSb/GaAs quantum wells, GaAsSb/GaAs quantum wells were grown on GaAs substrates. Strong photoluminescence intensity was observed in the grown quantum well. By proposing a simple method to exclude the band bending induced blueshift in power dependent photoluminescence, we firstly deduced the flat-band transition energies in the type-II GaAs/GaAsSb quantum wells.With the combination of the photoluminescence analysis of the type-I AlGaAs/GaAsSb quantum wells, we derived the strained band gap of GaAs0.7Sb0.3, which is 1.00±0.01eV. And the determined valence band offset ratios Qv of GaAs/GaAs0.7Sb0.3 and Al0.3Ga0.7As/GaAs0.7Sb0.3 heterostructures are 1.14±0.03 and 0.79±0.03 respectively. Also, we studied the effect of growth interruption at the interfaces with different group V exposure on the optical quality of the GaAsSb/GaAs quantum well. It is found that samples with Sb protection at the interfaces during growth interruption shows better optical quality. These samples also show “S-shape” and “inverse-S shape” characteristics in the PL peak and PL FWHM dependence on temperature. These phenomenon may be due to the co-exist of the localized state related emissions and band-to-band emissions. Sb composition fluctuation and interface roughness may be the reason for the localized state.
Finally, we successfully grew GaAsSb/GaAs double quantum well and single quantum well laser on GaAs substrates by using SSMBE. The lowest threshold current density is 210A/cm2 and the emission wavelength is 1.28um for the double quantum well laser. The lowest threshold current density is 300A/cm2 and the emission wavelength is 1.292um for the single quantum well laser. By studied the spontaneous emission characteristic of the grown laser, we found that the dominate carrier recombination mechanism is radiative recombination. And as temperature increases, the Auger recombination rate increases and dominates the carrier recombination mechanism. The higher carrier density in the type-II quantum well results in higher Auger recombination rate as temperature increases.


中文摘要 i
Abstract iii
目錄 v
附表索引 vii
附圖索引 ix
第一章 簡介 1
1.1 分子束磊晶法簡介 1
1.2 含銻化合物半導體材料 2
1.3 論文架構 4
第二章 銻化鎵材料的成長 7
2.1 簡介 7
2.2 實驗方法 8
2.3 結果與討論 9
2.3.1 Sb cracker cell裂解區溫度對銻化鎵磊晶層的影響 9
2.3.2 長晶溫度對銻化鎵磊晶層的影響 12
2.3.3 Sb/Ga BEP ratio對銻化鎵磊晶層的影響 13
2.4 結論 14
第三章 在砷化鎵基板上成長銻砷化鎵/砷化鎵量子井 22
3.1 簡介 22
3.2 實驗方法 26
3.3 結果與討論 27
3.3.1 銻砷化鎵/砷化鎵量子井的成長 27
3.3.2 銻砷化鎵/砷化鎵異質結構的能帶排列研究 28
3.3.3 成長中斷對於銻砷化鎵/砷化鎵量子井光學特性
的影響 33
3.4 結論 39
第四章 銻砷化鎵/砷化鎵量子井雷射之成長與特性研究 65
4.1 簡介 65
4.2 實驗方法 65
4.3 結果與討論 67
4.3.1 銻砷化鎵/砷化鎵雙量子井雷射 67
4.3.2 銻砷化鎵/砷化鎵單量子井雷射 71
4.4 結論 76
第五章 結論 100
參考文獻 103



1.V. Swaminathan and A. T. Macrander, “Materials Aspects of GaAs and InP Based Structures”, Prentice Hall, New Jersey (1991).
2.H. K. Choi, S. Eglash, “High-Efficiency High-Power GaInAsSb-AlGaAsSb Double-Heterostructure Lasers Emitting at 2.3 �慆”, IEEE J. Quantum Electron. 27, 1555 (1991).
3.G. C. Osbourn, “InAsSb strained-layer superlattices for long wavelength detector applications”, J. Vac. Sci. Technol. B 2, 176 (1984).
4.C. A. Wang, H. K. Choi, and S. L. Ransom, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices”, Appl. Phys. Lett. 75, 1305 (1999).
5.N. Matine, M. W. Dvorak, S. Lam, C. R. Bolognesi, Y. M. Houng, N. Moll, “Demonstration of GSMBE Grown InP/GaAs0.51Sb0.49/InP DHBTs”, Conference Proceedings of 2000 International Conference on Indium Phosphide and Related Materials, pp. 239 –242 (2000).
6.F. Quochi, J. E. Cunningham, M. Dinu, and J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29�慆”, IEE Electron. Lett. 36, 2075 (2000).
7.F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu, and J. Shah, “Continuous-Wave Operation of a 1.3-�慆 GaAsSb-GaAs Quantum Well Vertical-Cavity Surface-Emitting Laser at Room Temperature”, IEEE Photon. Tech. Lett. 13, 921 (2000).
8.T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome, and A. Gomyo, “GaAsSb: A novel material for 1.3�慆 VCSELs”, IEE Electron. Lett. 34, 2127 (1998).
9.T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi, and A. Kamei, ”Room-temperature pulsed operation of GaAsSb/GaAs vertical-cavity surface-emitting lasers”, IEE Electron. Lett. 35, 903 (1999).
10.M. Yamada, T. Anan, K. Kurihara, K. Nishi, K. Tokutome, A. Kamei, and S. Sugou, “Room temperature low-threshold CW operation of 1.23�慆 GaAsSb VCSELs on GaAs substrates”, IEE Electron. Lett. 36, 637 (2000).
11.T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30�慆 GaAsSb/GaAs VCSELs”, IEE Electron. Lett. 37, 566 (2001).
12.M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi, and S. Sugou, “Low-Threshold Operation of 1.3-�慆 GaAsSb Quantum-Well Lasers Directly Grown on GaAs Substrates”, IEEE Photon. Tech. Lett. 12, 774 (2000).
13.S. W. Ryu and P. D. Dapkus, “Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic vapour deposition on GaAs substrates”, IEE Electron. Lett. 36, 1387 (2000).
14.P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y. H. Zhang, “Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications”, IEE Electron. Lett. 39, 987 (2003).
15.O. Blum and J. F. Klem, “Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3�慆”, IEEE Photon. Tech. Lett. 12, 771 (2000)
16.P. W. Liu, M. H. Lee, H. H. Lin, and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy”, IEE Electron. Lett. 38, 1354 (2002).
17.P. W. Liu, G. H. Liao, and H. H. Lin, “1.3�慆 GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy”, IEE Electron. Lett. 40, 177 (2004).
18.W. W. Chow, O. B. Spahn, H. C. Schneider, and J. F. Klem, “Contributions to the Large Blue Emission Shift in a GaAsSb Type-II Laser”, IEEE J. Quantum Electron. 37, 1178 (2001).
19.J. F. Klem, O. Blum, S. R. Kurtz, I. J. Fritz, and K. D. Choquette, “GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates”, J. Vac. Sci. Tech. B 18, 1605 (2000).
20.M. S. Noh, R. D. Dupius, D. P. Bour, G. Walter, and H. Holonyak Jr., “Long-wavelength strain-compensated GaAsSb quantum-well heterostructure laser grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 83, 2530 (2003).
21.E. Hall, G. Almuneau, J. K. Kim, O. Sjolund, H. Kroemer, and L. A. Coldren, “Electrically-pumped, single-epitaxial VCSELs at 1.55�慆 with Sb-based mirrors”, IEE Electron. Lett. 35, 1337 (1999).
22.A. G. Milnes and A. Y. Polyakov, “Indium Arsenide - A Semiconductor For High-Speed and Electrooptical Devices”, Solid State Electron. 36, 803 (1993).
23.Y. Ohmori, Y. Suzuki, and H. Okamoto, “Room Temperature CW Operation of GaSb/AlGaSb MQW Laser Diodes Grown by MBE”, Jpn. J. Appl. Phys. 24, L657 (1985).
24.T. Miyazawa, S. Tarucha, Y. Ohmori, Y. Suzuki, and H. Okamoto, “Observation of Room Temperature Excitons in GaSb-AlGaSb Multi-Quantum Wells”, Jpn. J. Appl. Phys. 25, L200 (1986).
25.P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material”, J. Appl. Phys. 81, 5821 (1997).
26.K. F. Longenbach and W. I. Wang, “Molecular beam epitaxy of GaSb”, Appl. Phys. Lett. 59, 2427 (1991).
27.Q. Xie, J. E. Van Nostrand, R. L. Jones, J. Sizelove, and D. C. Look, “Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2”, J. Cryst. Growth 207, 255 (1999).
28.C. E. C. Wood, D. Desimone, K. Siger, and G. W. Wicks, “Magnesium- and calcium-doping behavior in molecular-beam epitaxial III-V compounds”, J. Appl. Phys. 53, 4320 (1982).
29.M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers”, IEEE J. Select. Topic Quantum Electron. 3, 719 (1997).
30.M. Kawaguchi, E. Gouardes, D. Schlenker, T. Kondo, T. Miyamoto, F. Koyama, and K. Iga, “Low threshold current density operation of GaInNAs quantum well lasers grown by metalorganic chemical vapour deposition”, IEE Electron. Lett. 36, 1776 (2000).
31.N. Tansu and L. J. Mawst, “Low-Threshold Strain-Compensated InGaAs(N) (�� = 1.19-1.31�慆) Quantum-Well Lasers”, IEEE Photon. Tech. Lett. 14, 444 (2002).
32.Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F. Lester, “High-performance InAs quantum-dot lasers near 1.3�慆”, Appl. Phys. Lett. 79, 3570 (2001).
33.A. E. Zhukov, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, U. M. Ustinov, A. F. Tsatsul’nikov, M. V. Maximov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates”, Appl. Phys. Lett. 75, 1926 (1999).
34.N. N. Ledentsov, D. Bimberg, V. M. Ustinov, Zh. I. Alferov, and J. A. Lott, “Self-Organized InGaAs Quantum Dots for Advanced Applications in Optoelectronics”, Jpn. J. Appl. Phys. 41, 949 (2002).
35.X. Sun, J. Hsu, X. G. Zheng, J. C. Campbell, and A. L. Holmes, “GaAsSb Resonant-Cavity-Enhanced Photodetectors Operating at 1.3�慆”, IEEE Photon. Tech. Lett. 14, 681 (2002).
36.X. Sun, S. Wang, J. Hsu, R. Sidhu, X. G. Zheng, X. L. Li, J. C. Campbell, and A. L. Holmes, “GaAsSb: A Novel Material for Near Infrared Photodetectors on GaAs Substrates”, IEEE J. Select. Topic Quantum Electron. 8, 817 (2002).
37.M. Peter, K. Winkler, M. Maier, H. Herres, J. Wagner, D. Fekete, K. H. Bachem, and D. Richards, “Realization and modeling of a pseudomorphic (GaAs1-xSbx-InyGa1-yAs)/GaAs bilayer-quantum well”, Appl. Phys. Lett. 67, 2639 (1995).
38.R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux, and L. Largeau, “Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs”, J. Appl. Phys. 89, 5473 (2001).
39.D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, “Photoluminescence study of the interface in type-II InAlAs-InP heterostructures”, J. Appl. Phys. 84, 2138 (1998).
40.G. Liu, S. L. Chuang, and S. H. Park, “Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach”, J. Appl. Phys. 88, 5554 (2000).
41.G. Ji, S. Agarwala, D. Huang, J. Chyi, and H. Morkoç, “Band lineup in GaAs1-xSbx/GaAs strained-layer multiple quantum wells grown by molecular beam epitaxy”, Phys. Rev. B. 38, 10571 (1988).
42.S. V. Ghaisas and A. Madhukar, “Surface kinetics and growth interruption in molecular-beam epitaxy of compound semiconductors: A computer simulation study”, J. Appl. Phys. 65, 3872 (1989).
43.M. Tanaka and H. Sakaki, “The effect of growth interruption on the optical properties of AlGaAs/GaAs quantum well”, J. Cryst. Growth 81, 153 (1987).
44.W. C. H. Choy, P. J. Hughes, B. L. Weiss, E. H. Li, K. Hong, and D. Pavlidis, “The effect of growth interruption on the properties of InGaAs/InAlAs quantum well structures”, Appl. Phys. Lett. 72, 338 (1998).
45.G. J. Shiau, C. P. Chao, P. E. Burrows, and S. R. Forrest, “Growth of abrupt InGaAs(P)/In(GaAs)P heterointerfaces by gas source molecular beam epitaxy”, J. Appl. Phys. 77, 201 (1995).
46.R. Kaspi, J. Steinshnider, M. Weimer, C. Moeller, and A. Ongstad, “As-soak control of the InAs-on-GaSb interface”, J. Cryst. Growth 225, 544 (2001).
47.R. Benzaquen, A. P. Roth, and R. Leonelli, “Structural and optical characterization of monolayer interfaces in Ga0.47In0.53As/InP multiple quantum wells grown by chemical beam epitaxy”, J. Appl. Phys. 79, 2640 (1996)
48.M. Yano, H. Yokose, Y. Iwai, and M. Inoue, “Surface reaction of III-V compound semiconductors irradiated by As and Sb molecular beams”, J. Cryst. Growth 111, 609 (1991).
49.N. Georgiev and T. Mozume, “Photoluminescence study of InGaAs/AlAsSb heterostructure”, J. Appl. Phys. 89, 1064 (2001).
50.N. N. Ledentsov, J. Böhrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Ya. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kop’ev, and Zh. I. Alferov, “Radiative states in type-II GaSb/GaAs quantum wells”, Phys. Rev. B 52, 14058 (1995).
51.R. E. Naory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, “Growth and properties of liquid-phase epitaxial GaAs1-xSbx”, J. Appl. Phys. 48, 1607 (1977).
52.R. Kaspi and K. R. Evans, “Sb-surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface”, J. Cryst. Growth 175/176, 838 (1997).
53.J. Schmitz, J. Wagner, F. Fuchs, N. Herres, P. Koidl, and J. D. Ralston, “Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecular beam epitaxy”, J. Cryst. Growth 150, 858 (1995).
54.Y. H. Cho, T. J. Schmidt, S. Bidnyk, G. H. Gainer, and J. J. Song, “Linear and nonlinear optical properties of InxGa1-xN/GaN heterostructures”, Phys. Rev. B 61, 7571 (2000).
55.M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, “Optical properties of strained antimonide-based heterostructures”, J. Appl. Phys. 94, 1506 (2003).
56.Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thickness”, J. Appl. Phys. 82, 4489.
57.S. F. Yoon, K. Radhakrishnan, and Q. Du, “Excitation dependence of photoluminescence linewidth in InAlAs grown on InP substrates by molecular beam epitaxy”, Thin Solid Films 295, 130 (1997).
58.S. L. Zuo, Y. G. Hong, E. T. Yu, and J. F. Klem, “Cross-sectional scanning tunneling microscopy of GaAsSb/GaAs quantum well structures”, J. Appl. Phys. 92, 3761 (2002).
59.O. Blum and J. F. Klem, “Low threshold 1.3�慆 GaAsSb lasers on GaAs substrates”, Proceedings of Device Research Conference 2000, Device Research Conference 2000, pp. 121 (2000).
60.W. W. Chow and H. C. Schneider, “Charge-separation effects in 1.3�慆 GaAsSb type-II quantum-well laser gain”, Appl. Phys. Lett. 78, 4100 (2001).
61.W. Fang, M. Hattendorf, S. L. Chuang, J. Minch, C. S. Chang, C. G. Bethea, and Y. K. Chen, “Analysis of temperature sensitivity in semiconductor lasers using gain and spontaneous emission measurements”, Appl. Phys. Lett. 70, 796 (1997).
62.F. Girardin and G. H. Duan, “Characterization of Semiconductor Lasers by Spontaneous Emission Measurements”, IEEE J. Select. Topic Quantum Electron. 3, 461 (1997).
63.P. M. Smowton and P. Blood, “The Differencial Efficiency of Quantum-Well Lasers”, IEEE J. Select. Topic Quantum Electron. 3, 491 (1997).
64.G. M. Lewis, P. M. Smowton, J. D. Thomson, H. D. Summers, and P. Blood, “Measurement of true spontaneous emission spectra from the facet of diode laser structures”, Appl. Phys. Lett. 80, 1 (2002).
65.S. J. Sweeny, A. F. Phillips, A. R. Adams, E. P. O’Reilly, and P. J. A. Thijis, “The Effect of Temperature Dependent Processes on the Performance of 1.5-�慆 Compressively Strained InGaAs(P) MQW Semiconductor Diode Lasers”, IEEE Photon. Tech. Lett. 10, 1076 (1998).
66.A. F. Philips, S. J. Sweeny, A. R. Adams, and P. J. A. Thijis, “The Temperature Dependence of 1.3- and 1.5-�慆 Compressively Strained InGaAs(P) MQW Semiconductor Lasers”, IEEE J. Select. Topic Quantum Electron. 5, 401 (1999).
67.R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeny, E. P. O’Reilly, A. Andreev, and H. Riechert, “A Quantitative Study of Radiative, Auger and Defect Related Recombination Processes in 1.3-�慆 GaInNAs-Based Quantum-Well Lasers”, IEEE J. Select. Topic Quantum Electron. 8, 801 (2002).
68.R. Fehse, S. Jin, S. J. Sweeny, A. R. Adams, E. P. O’Reilly, H. Riechert, S. Illek, and A. Yu. Egorov, “Evidence for large monomolecular recombination contribution to threshold current in 1.3�慆 GaInNAs semiconductor lasers”, IEE Electron. Lett. 37, 1518 (2001).
69.T. Higashi, S. J. Sweeny, A. F. Philips, A. R. Adams, E. P. O’Reilly, T. Uchida, and T. Fujii, “Experimental Analysis of Temperature Dependence in 1.3-�慆 AlGaInAs-InP Strained MQW Lasers”, IEEE J. Select. Topic Quantum Electron. 5, 413 (1999).
70.T. Higashi, S. J. Sweeny, A. F. Philips, A. R. Adams, E. P. O’Reilly, T. Uchida, and T. Fujii, “Observation of Reduced Nonradiative Current in 1.3-�慆 AlGaInAs-InP Strained MQW Lasers”, IEEE Photon. Tech. Lett. 11, 409 (1999).
71.G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures“ (Les Editions de Physique, Paris 1998).
72.R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-AlxGa1-xAs system”, Phys. Rev. B 29, 3740 (1984).
73.R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy-gap discontinuities and effective masses for GaAs-AlxGa1-xAs quantum wells”, Phys. Rev. B 29, 7085 (1984).
74.D. Arnold, A. Ketterson, T. Henderson, J. Klem, and H. Morkoç, “Determination of the valence-band discontinuity between GaAs and (Al,Ga)As by the use of p+-GaAs-(Al,Ga)As-p--GaAs capacitors”, Appl. Phys. Lett. 45, 1237 (1985).
75.T. W. Hickmott and P. M. Solomon, “Negative charge, barrier heights, and the conduction-band discontinuity in AlxGa1-xAs capacitors”, J. Appl. Phys. 57, 2844 (1985).
76.J. Batey, S. L. Wright, and D. J. Dimaria, “Energy band-gap discontinuities in GaAs:(Al,Ga)As heterojunctions”, J. Appl. Phys. 57, 484 (1985).
77.I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V semiconductors and their alloys”, J. Appl. Phys. 89, 5815 (2001).
78.H. C. Casey, Jr. and M. B. Panish, “Heterostructure Lasers”, Academic Press, New York, (1978).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top