(3.236.222.124) 您好!臺灣時間:2021/05/11 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李源華
研究生(外文):Yuan-Hwa Lee
論文名稱:微型仿生體之氣味追蹤演算法與氣味擴散環境建立
論文名稱(外文):Odor Tracking Algorithm and Scent Distribution Model Development for Micro Bio-mimetic Robot
指導教授:陳永耀陳永耀引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:82
中文關鍵詞:即時預測氣味搜尋仿生體氣味來源定位氣味追蹤氣味補償
外文關鍵詞:Real-time PredictionScent compensationCollective Bio-mimetic RoboticsOdor source trackingOdor Localization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微型機械具有感測周圍環境的刺激以及產生相對應的行為,可用在無人監督下幫忙人類完成許多工作,包括許多重複性以及危險性的工作如救災、搜尋有毒氣味來源,以及應用於生產線增加生產力等等。其中,建立一套感測系統能讓微型仿生機械有能力去尋找及定位一個或多個氣味來源是尤其吸引我們作相關及深入的研究在這氣體感測的領域裡。因為此類應用被高度需求在瓦斯漏氣偵測、氣體污染源的追蹤以及救災救難中失火的起始點。
本論文發展了一套氣味追蹤演算法可以讓帶著氣味感測器的微型仿生機械有能力去搜尋及定位氣味來源;此演算法主要部分是基於一種概念”氣味導引”也就是利用單一感測器可以指引微型仿生機械到氣味來源的附近領域。而本論文依此提出一種新的氣味來源定位演算法,讓微型仿生機械可以在離氣味來源較遠的區域先行預測離自己近的氣味來源的位置,當微型機械作一個固定模式的運動時,將氣味感測器感應的數值帶入氣味直接擴散的模型;因此將兩者做類似擬合動作,可以先行預測氣味來源的方位。
總結本論文主要研究在探討有限感測能力下,仿生昆蟲之行為反應模式設計及所能達成之預期工作目標,研究重點在於感測系統之建立及智慧型感測訊號處理與行為反應。本論文主要的研究內容包含兩主題,分別為氣體擴散環境的建立以及氣味追蹤演算法在氣味來源定位的應用。在本論文中,我們為氣味來源定位問題提供詳細的解析,從一般的搜尋方式到建立一套有系統有效率的氣味搜尋演算法;在這些研究方法裡,仿生生物行為的靈感激發給了我們演算法很大的助益。
This thesis presents a methodology for developing a search algorithm which directs self-organized and micro-autonomous robotic systems. Then it demonstrates how this algorithm can be applied to the problem of finding one or more than one odor sources in the indoor environment without constant airflow. The search algorithm is applicable to other task domains and the resulting odor localization system can extend the development of a micro-robot. Specifically, this thesis analyzes a basic collective search task for random and coordinated scent search. It also investigates a set of biologically inspired behaviors that permit a micro-robot to traverse an odor distribution environment to its source and describes the common characteristics of successful algorithms.
Collective search and zigzag search are then combined (along with egocentric source declaration) into the full odor localization task which is optimized in simulation. Then, following the design methodology, an odor distribution model with obstacles is presented which is used in simulation to numerically verify the scent search algorithm. Finally, a search behavior is developed for a micro-robotic scent tracking vehicle to collectively “sniff out” locations of high scent concentrations in unknown, geometrically complex environments. The micro-vehicle is assumed to be programmed with guidance and control algorithms. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using spiral surge tracking, zigzag collective search and gradient descent tracking. The concepts of zigzag collective search and point source cancellation are modern concepts introduced within. Simulation results for micro-vehicle are given.
中文摘要 I
ABSTRACT II
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 MOTIVATION 2
1.2 ODOR SOURCES LOCALIZATION PROBLEMS 3
1.3 THESIS ORGANIZATION 5
2. BACKGROUND 6
2.1 BIO-MIMETIC ROBOTICS 7
2.2 ODOR SOURCE LOCALIZATION AND BIO-MIMETIC BEHAVIOR 8
2.2.1 Biological Odor Localization and Tracking Behavior as Inspired by Moths and Other Insects 10
2.2.2 Systems Combine Robotic, Odor Tracking Algorithms, and Sensory Modalities 14
2.3 METAL OXIDE SEMICONDUCTOR GAS SENSOR CHARACTERISTICS 16
2.3.1. MOS Gas Sensor Operation Principle 16
2.3.2 Characteristics of MOS Gas Sensor-TGS Series 18
3. DEVELOP METHOD FOR ODOR SOURCE LOCALIZATION SYSTEM 22
3.1 THE DEVELOPMENT OF THE ENTIRE SYSTEM 22
3.1.1 Odor Source Localization System Block Diagram 24
3.1.2 Block Diagram Definition 26
3.2 GAS DISTRIBUTION MODEL WITH OBSTACLES ENVIRONMENT 27
4. GUIDANCE AND SEARCH ALGORITHM FOR ODOR SOURCE LOCALIZATION 32
4.1 SEARCH ALGORITHM 34
4.1.1 Phase1: Spiral Surge 36
4.1.2 Phase2: Zigzag Walking (Extended Kalman Filter) 38
4.1.3 Phase3: Gradient Descent 50
4.2 SINGLE SOURCE SEARCH WITHOUT OBSTACLE - SOURCE DECLARATION 52
4.3 MULTIPLE SOURCES SEARCH WITH OBSTACLE – SCENT COMPENSATION 53
4.4 OBSTACLE AVOIDANCE 54
5. SIMULATION RESULTS 57
5.1 GAS DISTRIBUTION CONTOUR AND GRADIENT DESCENT SEARCH 58
5.1.1 Gas Distribution Contour 58
5.1.2 Gradient Descent Method in Tracking Scent 60
5.2 SEARCH ALGORITHM OF COMBINATIVE PHASES AND NON-IDEAL ODOR SOURCES 64
5.2.1 Scent Search by Combinative Phases 64
5.2.2 Non-ideal Odor Sources 67
5.3 FULL ODOR SOURCES LOCALIZATION SIMULATION 71
5.4 EFFICIENCY BETWEEN THE SIMPLE AND EKF METHOD FOR LEADING ZIGZAG WALKING 74
6. CONCLUSIONS 76
REFERENCE 78
[1] R.A. Russell, D. Thiel, R. Deveza, A. Mackey-Sim, A robotic system to locate hazardous chemical leaks, Proc. IEEE Int. Conf. Robotics and Automation, Nagoya, Japan, May 1995, pp. 556-561.
[2] T. Nakamoto, H. Ishida, T. Moriizumi, An odor compass of localizing an odor source, Sensors and Actuators B 35 ,1996,pp.32-36.
[3] B. Webb. View from the boundary. Biological Bulletin, 200:184, April 2001.
[4] C. Loizos. Special feature: Service-sector robotics: Robots are breaking out of
the factory. Red Herring, September 1998.
[5] G. Walter. The Living Brain. Norton, New York, 1953.
[6] J. F. Engelberger. Robotics in practice : management and applications of industrial robots. AMACOM, New York, 1980.
[7] L. Bruno. Mister roboto: Pioneer Joseph Engelberger shares his passion for robotics. Red Herring, August 2000.
[8] R. T. Carde and A. Mafra-Neto. Effect of pheromone plume structure on moth orientation to pheromone. In R. T. Carde and A. K. Minks, editors, Perspectives on Insect Pheromones. New Frontiers, pages 275. Chapman and Hall, N.Y., 1996.
[9] J. H. Belanger and M. A. Willis. Adaptive control of odor guided locomotion: Behavioral flexibility as an antidote to environmental unpredictability. Adaptive Behavior, 4:217-253, 1996.
[10] U. Bhalla and J. M. Bower. Multi-day recording from olfactory bulb neurons in awake freely moving rats: Spatial and temporally organized variability in odor-ant response properties. J. of Computational Neuroscience, 4:221-256, 1997.
[11] J. Atema. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biological Bull., 191:129-138, 1996.
[12] M. J.Weissburg. From odor trails to vortex streets: Chemo and mechanosensory orientation in turbulent and laminar flows. In M. Lehrer, editor, Orientation and Communication in Arthropods, pages 215-246. Birkhauser, Basel, 1997.
[13] R. A. Russell. Odor detection by mobile robots. World Scientific, Singapore,
1999.
[14] T. Nakamoto, H. Ishida, and T. Moriizumi. A sensing system for odor plumes. Analytical Chemistry, 71(15):531A-537A, August 1999
[15] R. A. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim. A robotic system to locate hazardous chemical leaks. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 556-561, Nagoya, 1995
[16] F. W. Grasso, T. R. Consi, D. C. Mountain, and J. Atema. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors. Robotics and Autonomous Systems, 30:115-131, 2000
[17] S. Kazadi, R. Goodman, D. Tsikata, and H. Lin. An autonomous water vapor plume tracking robot using passive resistive polymer sensors. Autonomous Robots, 9(2):175-188, 2000.
[18] H. T. Nagle, R. Guitierrez-Osuna, and S. S. Schiffman. The how and why of electronic noses. IEEE Spectrum, 35(9):22-31, September 1998.
[19] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata. Plume-tracking robots: A new application of chemical sensors. Biological Bulletin, 200:222-226, April 2001.
[20] H. Ishida, Y. Kagawa, T. Nakamoto, and T. Moriizumi. Odor-source localization in the clean room by an autonomous mobile sensing system. Sensors and Actuators B, 33:115-121, 1996.
[21] Jeffrey L. Dohner. A Guidance and Control Algorithm for Scent Tracking Micro-Robotic Vehicle Swarms. Sandia Report march , 1998
[22] Ryohei Kanzaki. Behavioral and Neural Basis of Instinctive Behavior in Insects: OdorSource Searching Strategies without Memory and Learning. Robotics and Autonomous Systems, 18:33–43, 1996.
[23] Ryohei Kanzaki. Self-generated Zigzag Turning of Bombyx Mori Males During Pheromonemediated Upwind Walking. Zoological Science, 9:515–527, 1992.
[24] H. Ishida, K. Hayashi, M. Takakusaki, T. Nakamoto, T. Moriizumi and R. Kanzaki, Odor-source localization system mimicking behavior of silkworm moth, Sensors and Actuator A, 51: 225-230,1996.
[25] Ryohei Kanzaki. Coordination of Wing Motion and Walking Suggests Common Control of Zigzag Motor Program in a Male Silkworm Moth. J Comp Physiol A, 182:267-276, 1998.
[26] Hiranaka, H., Yamazaki, H. IEEJ, Tech. Dig. 8th Sensor Symp. 1989, 177.
[27] Nakamoto, T., Ishida, H., Moriizumi, T. IEEE Proc. Int. Symp. Industrial Electronics 1997, 1, SS128.
[28] Bauzil, G., Briot, M. and Ribes, P., "A Navigation Sub-System Using Ultrasonic
Sensors for the Mobile Robot HILARE." 1st In.. Conf. on Robot Vision and Sensory Controls, Stratford-upon-Avon, UK., 1981, pp. 47-58 and pp. 681-698.
[29] Giralt, G., "Mobile Robots." NATO ASI Series, Vol. F11, Robotics and Artificial Intelligence, Springer-Verlag, 1984, pp. 365-393.
[30] Iijima, J., Yuta, S., and Kanayama, Y., "Elementary Functions of a Self-Contained Robot "YAMABICO 3.1" ." Proc. of the 11th Int. Symp. on Industrial Robots, Tokyo, 1983, pp. 211-218.
[31] Hong, S., Kim, S., Park, K., and Lee, J., 1996, “Local Motion Planner for Nonholonomic Mobile Robots in the Presence of the Unknown Obstacles”, IEEE International Conference on Robotics and Automation, No. 2, pp. 1212-1217.
[32] Khatib, O., Spring 1986, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”, International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98.
[33] S. Benkowki, M. Monticino, and J. Wiesinger. A survey of the search theory
literature. Naval Research Logisitics, 38(4):469-494, 1991.
[34] T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot
teams. IEEE Robotics and Automation, 14(6):926-939, December 1998.
[35] D. W. Gage. Randomized search strategies with imperfect sensors. In Pro-
ceedings of SPIE Mobile Robots VIII, volume 2058, pages 270-279, Boston,
September 1993.
[36] Paul Zarchan, Howard Musoff. “Fundamentals of Kalman Filtering-A Practical Approach “, AIAA volume 190. 2000
[37] Mohinder S. Grewal, Angus P. Andrews. “Kalman Filtering Theory and Practice Using Matlab 2nd edition,” John Wiley & Sons, Inc. 2001.
[38] Eli Brookner. “Tracking and Kalman Filtering Made Easy,” John Wiley & Sons, Inc, 1998.
[39] Gerald, C.F.,”Applied Numerical Analysis, 2nd edition,” Addison-Wesly Publishing Company., Reading, MA, May 1980.
[40] Junger, M.C., and Feit, D., “Sound Structures, and Their Interaction, 2nd edition,” MIT, Press, Cambridge, MA , 1986.
[41] Figaro Engineering Inc. Figaro technique information by http://www.figarosensor.com
[42] M. W. Siegel. Olfaction Metal Oxide Semiconductor Gas Sensors and Neural Networks. The Robotics Institute Pittsburgh, PA 15213, Carnegie Mellon University, USA.
[43] Salido, J., Dolan, J.M., Hampshire, J., and Khosla, P., 1997, “ A Modified Reactive ControlFramework for Cooperative Mobile Robots”, Proceedings of the SPIE - The International Society of Optical Engineering, Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, vol. 3209, pp.90-100.
[44] Hanspeter S., and Junkins J.L., 1997, “Bug Control”, Technical report, Aerospace Engineering Department, Texas A&M University.
[45] Brooks, R.A., March 1986, “A Robust Layered Control Systems for a Mobile Robot”,IEEE Journal of Robotics and Automation, Vol. RA-2, No.1, pp. 14-23.
[46] Masoud, A.A., Masoud A.S., and Bayoumi, M.M., 1994, “Robot Navigation Using a Pressure Generated Mechanical Stress Field ‘The Biharmonic Potential Approach’ ”, IEEE International Conference on Robotics and Automation, pp. 124-129.
[47] Bemporad, A., De Luca, A., and Giuseppe, O., 1996, “Local Incremental Planning for a Car-Like Robot Navigating among Obstacles”, IEEE International Conference on Robotics and Automation, No. 2, pp. 1205-1211.
[48] Anderson, D.A., Tannehill, C.J., and Pletcher, H.R., 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corp., New York, NY.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔