(3.226.72.118) 您好!臺灣時間:2021/05/13 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許書豪
研究生(外文):Su-Hau Hsu
論文名稱:機械手臂系統之適應性分散式控制器設計
論文名稱(外文):Adaptive decentralized control of robot manipulators
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:104
中文關鍵詞:機械手臂分散式控制適應性控制
外文關鍵詞:Robot manipualtordecentralized controladaptive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用高階輸入以及可變結構的設計觀念,針對機械手臂系統, 提出一個新型「適應性分散式控制器」的設計方法,以解決傳統上分散式控制器所遭遇的問題。由於該控制器是在分散式架構下運作,因此除了可減少通訊線路的鋪設 更可利用低階硬體完成實現,進而降低實作成本。尤其該控制器已搭配適應律的設計,因而具有處理參數未明之系統的能力。在實際應用時,毋需精準地知道系統參數,亦可達成控制目標,因此將會獲得許多的便利。
我們首先將這個適應性分散式控制器應用於解決「時變機械手臂」 (即機械手臂具由隨時間改變而變化的動力學參數)的控制問題。我們證明,無論機械手臂的參數如何快速變化,整個閉迴路系統的所有訊號將為有界,而且位置與速度追蹤誤差將指數收斂於一個小殘值區。值得注意的是,上述設計應用到「非時變機械手臂」 (即機械手臂具有固定大小的動力學參數)的控制問題,亦能獲得相同的控制性能。其次我們將這個適應性分散式控制器應用於解決「順從機械手臂」的控制問題,其中藉由環境撓性係數線上鑑別,進而完成目標軌跡的即時修正。我們證明不僅整個閉迴路系統的所有訊號將為有界之外,同時證明末端效應器的位置、姿態與接觸力追蹤誤差將漸進收斂於一個小殘值區。最後,我們將這個適應性分散式控制器應用於解決「電流饋送型感應馬達驅動之機械手臂」的控制問題。由於採用轉子磁通觀察器與針對感應馬達的設計適應律,我們證明,即使整個機電系統的參數出現不明的情況,不僅整個閉迴路系統的所有訊號均為有界,位置、速度與磁通追蹤誤差將漸進收斂於一個小殘值區。
In this thesis, a new approach of fully adaptive decentralized control is proposed for different tasks of robot manipulators. Since the proposed approach operates in a de-centralized manner, it is structurally simple such that only low-level hardware is re-quired in actual implementation. Because the adaptive mechanism is employed in the decentralized control scheme, the control performance could be guaranteed even if there is any parametric uncertainty in the robot manipulators systems. As a result, the proposed approach is very convenient for practical application.
This new adaptive decentralized controller is first applied to the time-varying robot manipulators, which is an important problem recently addressed in the filed of robot control. It is shown that, without any prior knowledge of the time-varying robot manipulators, the global stability of the closed-loop control systems could be achieved. Then, this new adaptive decentralized controller is applied to compliant robot ma-nipulators. After the on-line trajectory modification mechanism is provided, the force and position/orientation tracking performances of the end-effector are guaranteed even when the environment stiffness is unknown. Finally, this new adaptive decen-tralized controller is applied to the robot manipulators driven by current-fed induction motors. The servo and rotor-flux tracking performances is guaranteed here without any prior knowledge of the overall electromechanical systems.
ABSTRACT (Chinese) …………………………………………… i
ABSTRACT (English) …………………………………………… ii
CONTENT …………………………………………………………… iii
LIST OF FIGURES ………………………………………………… v
LIST OF TABLES ………………………………………………… vii
LIST OF SLMBOLS ………………………………………………… viii
1. INTRODUCTION ………………………………………………… 1
1.1 Motivation and Related Researches …………………… 1
1.2 Contribution of the Thesis …………………………… 4
1.3 Origination of the Dissertation …………………… 6
2. PRELIMINARY ………………………………………………… 8
2.1 Modeling of Robot Manipulators ……………………… 8
2.1.1 Modeling of Time-Varying Robot Manipulators…… 8
2.1.2 Modeling of Compliant Robot Manipulators ……… 10
2.1.3 Modeling of Robot Manipulators Driven by
Current-Fed Induction Motors ……………………… 11
2.2 Useful Lemmas …………………………………………… 14
3. ADAPTIVE DECENTRALIZED CONTROL OF TIME-VARYING ROBOT
MANIPULATORS ………………………………………………… 16
3.1 Introduction ……………………………………………… 16
3.2 Problem Statement ………………………………………… 17
3.3 Controller Design ………………………………………… 20
3.3.1 Non-adaptive control scheme ………………………… 22
3.3.2 Adaptive control scheme ……………………………… 26
3.4 Simulation Results and Discussion …………………… 31
3.4.1 Non-adaptive control scheme ………………………… 32
3.4.2 Adaptive control scheme ……………………………… 34
3.5 Conclusion Remarks ……………………………………… 37
4. ADAPTIVE DECENTRALIZED CONTROL OF COMPLIANT ROBOT
MANIPULATORS ………………………………………………… 38
4.1 Introduction ……………………………………………… 38
4.2 Problem Statement ………………………………………… 39
4.3 Controller Design ………………………………………… 41
4.3.1 Non-adaptive control scheme ………………………… 41
4.3.2 Adaptive control scheme ……………………………… 48
4.4 Simulation Results and Discussion …………………… 55
4.4.1 Non-adaptive control scheme ………………………… 56
4.4.2 Adaptive control scheme ……………………………… 60
4.5 Conclusion Remarks ……………………………………… 66
5. ADAPTIVE DECENTRALIZED CONTROL OF ROBOT MANIPULATORS
DRIVEN BY CURRENT-FED INDUCTION MOTORS ……………… 67
5.1 Introduction ……………………………………………… 67
5.2 Problem Statement ………………………………………… 68
5.3 Controller Design ………………………………………… 70
5.3.1 Non-adaptive control scheme ………………………… 72
5.3.2 Adaptive control scheme ……………………………… 79
5.4 Simulation Results and Discussion …………………… 89
5.4.1 Non-adaptive control scheme ………………………… 90
5.4.2 Adaptive control scheme ……………………………… 93
5.5 Conclusion Remarks ……………………………………… 97
6. CONCLUSIONS ………………………………………………… 98
REFERENCES ……………………………………………………… 100
[1] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and iner-tial parameters of the PUMA 560 arm,” Proc. IEEE Int. Conf. Robot. Autom., San Francisco, USA, pp. 510-518, 1986.
[2] M. Bodson, J. Chiasson, and R. Novotnak, “High-performance induction motor control via input-output linearization,” IEEE Control System Magazine, Vol. 14, Issue 4, pp. 25-33, 1994.
[3] C. Canudas de Wit and B. Brogilato, “Direct adaptive impedance control in-cluding transition phases,” Automatica, Vol. 23, Issue 4, pp. 643-649, 1997.
[4] C. Canudas de Wit, R. Ortega, and S. I. Seleme, “Robot motion control using induction motor drives,” in Proc. IEEE Int. Conf. Robot and Automation, At-lanta, GA, pp. 533-538, 1993.
[5] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position control of robotic manipulators,” IEEE Trans. Robot. Autom., vol. 9, pp. 361-373, 1993.
[6] S. Chiaverini, B. Siciliano, and L. Villani, “A survey of robot interaction control schemes with experimental comparison,” IEEE/ASME Trans. on Mechatron., vol. 4, no. 3, pp. 273-285, 1999.
[7] P. I. Corke and B. Armstrong-Hélouvry, “A search for consensus among model parameters reported for the PUMA 560 robot,” Proc. IEEE Int. Conf. Robot. Autom., San Diego, USA, pp. 1608-1613, 1994.
[8] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd Edition, Ad-dison-Wesley, Reading, Mass., 1986.
[9] J. De Schutter and H. Van Brussel, “Compliant robot motion II. A control ap-proach based on external control loops,” Int. J. Robot. Res., Vol. 7, No. 4, pp. 18-33, 1988.
[10] L.-C. Fu, “Robust adaptive decentralized control of robot manipulators,” IEEE Trans. Automat. Contr., Vol. 33, No. 1, pp. 106-110, 1992.
[11] D. T. Gavel, and D. D. Šiljak, “Decentralized adaptive control: Structural condi-tions for stability,” IEEE Trans. Automat. Contr., Vol. 34, No. 4, pp. 413-426, 1989.
[12] G. Guerrero-Ramírez, and Y. Tang, “Decentralized control of rigid robots driven by current-fed induction motor,” J. Dyn. Syst. Meas. Control, Vol. 124, Issue 4, pp. 549-553, 2002.
[13] N. Hogan, “Impedance control: An approach to manipulation, Part: I-III,” ASME J. Dynam. Syst. Measurement Contr., vol. 103, pp. 1-24, 1985.
[14] J. Hu, and D. M. Dawson, “Adaptive control of induction motor system despite rotor resistance uncertainty,” Automatica, Vol. 32, Issue 8, pp. 1127-1143, 1996.
[15] J. Hu, D. M. Dawson, and Y. Qian, “Position tracking control of robot manipu-lators driven by induction motors without flux measurements,” IEEE Trans. Robot. Autom., Vol. 12, No. 3, pp. 419-438, 1996.
[16] S.-H. Hsu and L.-C. Fu, “Globally fully adaptive decentralized control of robot manipulators,” Proc. IEEE Conf. Control Decision, Las Vegas, USA, pp. 1733-1738, 2002.
[17] P. A. Ioannou, “Decentralized adaptive control of interconnected systems,” IEEE Trans. Automat. Contr., Vol. 31, No. 3, pp. 291-297, 1986.
[18] P. A. Ioannou and P. V. Kokotović, P. V., “Instability analysis and improvement of robustness of adaptive control,” Automatica, Vol. 20, Issue 5, pp. 583-594, 1984.
[19] P. A. Ioannous and J. Sun, Robust Adaptive Control, Prentice-Hall, Upper Saddle River, NJ, 1996.
[20] J.-H. Jean and L.-C. Fu “Adaptive hybrid control of strategies for constrained robots,” IEEE Trans. Robot. Autom., vol. 36, no. 2, pp. 598-603, 1993.
[21] I. Kanellakopoulos, P. T. Krein, and F. Disilvestro, “Nonlinear flux-observer -based control of induction motors,” Proc. American Control Conf., Chicago, IL, pp. 1700-1704, 1992.
[22] H. K. Khalil. Nonlinear Systems, 3rd Edition, Prentice-Hall, Upper Saddle River, NJ, 2002.
[23] O. Khatib, “A unified approach for motion and force control of robot manipula-tor: The operational space formulation,” IEEE J. Robot. Autom., vol. 3, no. 1, pp. 43-53, 1987.
[24] P. C. Krause, Analysis of Electric Machinery, McGraw-Hill, 1987.
[25] A.-M. Lee, L.-C. Fu, C.-Y. Tsai, and Y.-C. Lin, “Nonlinear Adaptive Speed and Torque Control of Induction Motors with Unknown Rotor Resistance,” IEEE Trans. Ind. Electron., Vol. 48, No. 2, pp. 391-401, 2001.
[26] M. Liu, “Decentralized control of robot manipulators: Nonlinear and adaptive approaches,” IEEE Trans. Automat. Contr., Vol. 44, No. 2, pp. 357-363, 1999.
[27] R. Marino, S. Peresada, and P. Valigi, “Adaptive input-output linearizing control of induction motors,” IEEE Trans. Automat. Contr., Vol. 44, No. 5, pp. 208-221, 1993.
[28] R. Marino, S. Peresada, and P. Tomei, “Adaptive output feedback control of cur-rent-fed induction motors with uncertain rotor resistance and load torque,” Auto-matica, Vol. 34, Issue 5, pp. 617-624, 1998.
[29] R. Marino, S. Peresada, and P. Tomei, “Global adaptive output feedback control of induction motors with uncertain rotor resistance,” IEEE Trans. Automat. Contr., Vol. 44, No. 5, pp. 967- 983, 1999.
[30] N. H. McClamroch and D. Wang, “Feedback stabilization and tracking of con-strained robots,” IEEE Trans. Automat. Contr., Vol. 36, No. 5, pp. 419-426, 1988.
[31] K. S. Narendra, and A. M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[32] P. R. Pagilla, B. Yu, and K. L. Pau, “Adaptive control of time-varying mechani-cal systems: analysis and experiments,” IEEE/ASME Trans. Mechatron., Vol. 5, No. 4, pp. 410-418, 2000.
[33] R. Ortega, C. Canudas, and S. I. Seleme, “Nonlinear control of induction motors: Torque tracking with unknown load disturbance,” IEEE Trans. Automat. Contr. Vol. 38, No. 11, pp. 1675-1680, 1993.
[34] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” ASME J. Dynam. Syst. Meas. Contr., Vol. 103, pp. 126-133, 1981.
[35] E. Panteley, and R. Ortega, “Cascaded control of feedback interconnected nonlinear systems: Application to robots with AC drives,” Automatica, Vol. 33, Issue 11, pp 1935-1947, 1997.
[36] J. S. Reed, and P. A. Ioannou, “Instability analysis and robust adaptive control of robot manipulators,” IEEE Trans. Automat. Contr., Vol. 5, No. 3, pp. 381-386, 1989.
[37] W. J. Rugh, Linear System Theory, 2nd Edition, Prentice-Hall, Upper Saddle River, NJ, 1996.
[38] L. Shi and S. K. Singh, “Decentralized adaptive controller design for large-scale systems with higher order interconnections. IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1106-1118, 1992.
[39] B. Siciliano and L. Villani, “A passivity-based approach to force regulation and motion control of robot manipulator,” Automatica, Vol. 32, Issue 3, pp. 443-447, 1996.
[40] R. J. Schilling, Fundamentals of Robotics: Analysis and Control. Prentice-Hall, Upper Saddle River, New Jersey, 1998.
[41] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” Int. J. Robotics Res. Vol. 6, No. 3, pp. 49-59, 1987.
[42] M. W. Spong, J. S. Thorp, and J. W. Kleinwaks, “Robust microprocessor control of robot manipulator,” Automatica, Vol. 23, Issue 3, pp. 373-379, 1987.
[43] M. W. Spong and M. Vidyasgar, Robot Dynamical and Control, John Wiley and Sons, NY, 1989.
[44] Y. D. Song, and R. H. Middletion, “Dealing with the time-varing parameter problem,” IEEE Trans. Automat. Contr., Vol. 37, No. 10, pp. 1597-1601, 1992.
[45] C.-Y. Su, “Adaptive sliding mode control of nonlinear robotic systems with time-varying parameters,” Syst. Control Lett., Vol. 23, pp. 35-41, 1994.
[46] Y. Tang, M. Tomizuka, G. Fuerrero, and G. Montemayor, “Decentralized robust control of mechanical systems,” IEEE Trans. Automat. Contr., Vol. 45, No. 4, pp. 771-776, 2000.
[47] G. Tao, “On robust adaptive control of robot manipulator,” Automatica, Vol. 28, Issue 4, pp. 803-807, 1992.
[48] P. Tomei, “Robust adaptive control of robots with arbitrary transient perform-ance and disturbance attenuation,” IEEE Trans. Automat. Contr., Vol. 44, No. 3, pp. 654-658, 1999.
[49] L. Villani, C. Canudas deWit, and B. Brogliato, “An exponential stable adaptive control for force and position tracking of robot manipulators,” IEEE Trans. Automat. Contr., Vol. 44, No. 4, pp. 798-802, 1999.
[50] C. Wen and Y. C. Soh, “Decentralized model reference adaptive control without restriction on subsystem relative degrees,” IEEE Trans. Automat. Contr. Vol. 44, No. 7, pp. 1464-1469, 1999.
[51] B. Yao, S. P. Chen, and D. Wang, “Unified formation of a variable structure control schemes for robot manipulators,” IEEE Trans. Automat. Contr., Vol. 39, No. 2, pp. 371-376, 1994.
[52] T. Yoshikawa, “Dynamic hybrid position/force control of robot manipulator ¾ Description of hand constraints and calculation of joint driving force,” IEEE J. Robot. Autom., Vol. 3, No. 5, pp.386-392, 1987.
[53] K. Y. Yeung and Y. P. Chen, “A new controller design for manipulators using the theory of variable structure systems,” IEEE Trans. Automat. Contr., Vol. 33, No. 2, pp. 200-206, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔