(3.92.96.236) 您好!臺灣時間:2021/05/07 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱士維
研究生(外文):Shi-Wei Chu
論文名稱:倍頻光學顯微影像術之原理及應用
論文名稱(外文):Harmonics optical microscopyPrinciples and Applications
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:180
中文關鍵詞:飛秒脈衝非線性效應二倍頻多光子螢光共焦顯微術三倍頻
外文關鍵詞:nonlinear effectsfemtosecond lasersecond harmonic generationthird harmonic generationconfocal microscopymultiphoton fluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:665
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們提出並實現了倍頻顯微影像術,更進一步將其應用在生物和材料科學領域。由研究倍頻產生的機制,我們提出了生物光子晶體的概念,並在許多生物樣本上得到證實。此外,更利用了倍頻的極化關係,求得生物組織中的非線性張量,並由此成功的解釋生物體中引發非線性效應的分子級結構特性。我們也是首次提出在生物體中存在著反向二倍頻強過順向二倍頻的材料(膠原蛋白纖維),並且經由實驗證實了這個違反直覺的現象。同時,我們首次在半導體材料中觀測到四光子螢光,並將此螢光信號配合倍頻顯微術在氮化鎵中取得了世界上第一張四光子螢光影像,我們也說明了如何將這些不同的顯微術模態對應到不同的物理特性上而能對氮化鎵材料有更深入的瞭解。
倍頻顯微影像術所用的信號是來自生物體或材料本身發出的二倍頻和三倍頻,無須外加任何染劑或額外處理。同時由於倍頻產生時的能量守恆特性,不會有多餘能量累積在樣本中,因此不會對樣本造成傷害。結合上述兩個特性,倍頻顯微影像術可說是提供了一個真正的非侵入式顯微檢測系統。此外,二倍頻強度和入射光強度平方成正比,三倍頻強度則和入射光強度三次方成正比,這樣的非線性效應提供了倍頻顯微影像術非常好的光學切片能力,且不需使用會讓信號衰減很多的共焦孔隙。這個特性配合上我們所使用的鉻貴橄欖石雷射,使得我們取像深度可以超過一毫米,還可以有次微米的解析度,而不會像一般光學顯微鏡的模糊不清。此外,倍頻顯微影像術具有非常高的對比,二倍頻信號主要是在生物體內整齊排列的奈米級構造產生,稱之為生物光子晶體效應。而三倍頻則是在介面不連續處產生,可以提供一個完整的細胞型態資訊。兩者結合才能夠對生物體中複雜的結構提供進一步的資訊。
我們驗證了把倍頻顯微影像術應用在胚胎發展生物學和皮膚組織學上,都能在不傷害樣本的條件下,提供傳統顯微鏡無法取得的深層組織高解析度影像,對於組織研究提供了良好的非侵入式觀測工具。另外,由於倍頻是由分子級的構造所引起,因此解出倍頻的非線性張量將可對其中的分子結構或排列有更進一步的瞭解。在此論文中,我們也成功利用了倍頻的極化關係求出了肌肉二階非線性張量中的每一項,同時也在合理的誤差範圍內對三階非線性張量做了相當精確的估計。
為了使我們的顯微技術具有更多功能,我們也試著將螢光信號整合進來。由於雷射波長的限制,要觀察到一般的染劑或生物體螢光分子的螢光,三或四光子激發是必須的。我們在染色的肝細胞上實現了世界上第一個結合了倍頻和三光子螢光的顯微術。更在氮化鎵中觀測到四光子激發螢光,同時將此信號和倍頻顯微術結合,取得第一張四光子激發螢光影像。而為了要實現即時倍頻影像觀測系統,必須要讓非線性的倍頻信號增加又不會對脆弱的生物樣本造成傷害,我們提出了利用提高雷射重複率的方法來達成這個要求,並且成功的以此原理做出即時倍頻顯微術。最後,由於動量守恆的緣故,倍頻信號在理論上應該是大部分都順著入射光方向向前傳播,但若要將倍頻顯微影像術發展為醫療用途,則必須要收集反向傳播的倍頻信號。我們深入探討了反向倍頻產生的機制,並首次證實了在膠原蛋白纖維中反向倍頻會比順向倍頻還要強,更提出了利用反向和順向倍頻的比例來估計膠原蛋白纖維的粗細的可能性。為未來將此技術應用在生物醫學領域奠定了良好的基礎。

In this thesis, a harmonics optical microscope is built based on a modified optical scanning microscope system and a Cr:forsterite laser. Both second harmonic generation (SHG) and third harmonic generation (THG) have been used as nonlinear imaging modalities. Due to their nonlinear natures, the generated SHG and THG intensities depend on square and cubic of the incident light intensity, respectively, providing an intrinsic optical sectioning capability without the need of a power-consuming pinhole. The energy-conservation and intrinsic-emission characteristics of these optical harmonics provide the optical noninvasive nature desirable for biomedical imaging applications. Based on a near-infrared excitation source at 1230-nm, the millimeter penetration and sub-micrometer resolution of our developed imaging system has been demonstrated. Both SHG and THG modalities provide unprecedented structure contrast. SHG, in biological samples, is generated from orderly arranged nano-scaled structures, which is termed bio-photonic crystal and thus exhibit a highly specific imaging contrast. THG, on the other hand, is interface-sensitive due to the Gouy phase shift effect, and can be used as a general structural imaging tool.
Such a microscopic tool would provide a significant impact on developmental biology and histology researches, as presented in the following chapters. As novel biopsy instrumentation for noninvasive deep tissue observation, it is of vital importance to characterize harmonic generations from collagen and muscle tissues. The full second-order nonlinear susceptibility tensor with 27 elements in muscle tissue can be determined through the polarization dependency of optical harmonics. Based on a cylindrical fiber theory, the third-order nonlinear susceptibility tensor elements can also be estimated with reasonable accuracy. The resolved nonlinear tensor can provide information on the molecular origin of the biological nonlinearities. For thick tissue in vivo biopsy, it is only practical to collect the backward SHG (B-SHG). We have demonstrated and discussed in detail all the mechanisms contributing to B-SHG. As a result, an asymmetric bipolar emission profile from thin collagen fibrils is revealed, for the first time. Moreover, the elaborate explanations of the complex B-SHG power dependency on the thickness and the local arrangement of collagen fibrils have been presented. The contribution of backscattering in thick tissues is also be characterized. These characterizations are of fundamental importance for the realization of epi-detected harmonics optical microscopy, which is a pragmatic solution for in vivo deep tissue inspection.
To improve the performance of our microscopy technique, several technical advancements, such as incorporating more channels and increasing the frame rate (signal intensity), are demonstrated. We have presented the combination of harmonics optical microscope with other nonlinear imaging modalities, such as three- and four-photon excited fluorescence. The first four-photon excited fluorescence is observed from a bulk gallium nitride sample, with simultaneously emitted strong SHG and THG. The superb spatial resolution of the four-photon fluorescence is manifested. The combined multimodal nonlinear microscope can provide more complete information about the structural and functional properties of both biological and semiconductor samples. We have also demonstrated that the frame rate of the nonlinear scanning microscopy system can be significantly increased with the aid of a high-repetition rate femtosecond laser. Most important of all, the nonlinear photodamage is greatly reduced by increasing the repetition rate. This concept is able to integrate with other fast-scanning scheme to further improve the frame rate.


Contents
誌謝 I
Abstract IV
摘要 VI
Contents VIII
Publication list XI

Chapter 1. Introduction 1
1.1 Historical overview 1
1.2 Scope of this thesis 7
Chapter 2. Basic principles 10
2.1 Basic concepts of microscopy 10
2.1.1 Diffraction and resolution 10
2.1.2 Aberration 13
2.2 Confocal laser scanning microscopy 15
2.3 Nonlinear optics (at focal region) 18
2.3.1 Second harmonic generation (SHG) 20
2.3.2 Third harmonic generation (THG) 26
2.3.3 Two-photon fluorescence (2PF) 32
2.4 Nonlinear laser scanning microscopy 35
2.4.1 Optical sectioning capability 36
2.4.2 Reduced photodamage and photobleach effects 38
2.4.3 Increased penetration depth 40
Chapter 3. Home-built harmonics optical microscope 44
3.1 Laser source selection 44
3.2 HOM setup 51
3.2.1 PMT-based HOM 51
3.2.2 Spectrum-based HOM 53
Chapter 4. Applications of HOM 56
4.1 Bio-photonic crystalline structure probing 57
4.2 In vivo observation of zebrafish embryogenesis 72
4.2.1 HOM imaging in a live embryo (0-24 hpf) 74
4.2.2 HOM imaging in a larva (after 24 hpf) 82
4.3 Dermatology studied by harmonics optical biopsy (HOB) 86
4.4 Nonlinear susceptibility determination in bio-tissue by polarization HOM (P-HOM) 94
4.4.1 Theoretical analysis of harmonic generations in muscle 96
4.4.2 Experimental results and discussion 102
Chapter 5. Advancement of HOM 112
5.1 Multiphoton multiharmonic microscopy 112
5.1.1 Three-photon fluorescence microscopy + HOM 112
5.1.2 Four-photon fluorescence (4PF) microscopy + HOM in GaN 116
5.2 Real-time HOM based on a 2-GHz repetition rate laser 125
5.2.1 Laser source 126
5.2.2 Enhanced SHG in muscle tissue 128
5.3 Epi-HOM (SHG modality) 137
5.3.1 Artificial single collagen experiment 142
5.3.2 B-SHG in collagen tissue 147
5.3.3 Epi-HOM in thick tissues 153
Chapter 6. Summary 163
Reference 168



Reference:
Anderson RR, Parish JA (1981) The optics of human skin. J Invest Dermat 77:13
Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918
Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning
laser microscopy by third harmonic generation. Appl Phys Lett 70:922
Battaglia A (2003) Neuroimaging studies in the evaluation of developmental delay/mental retardation. Am. J Med Genet C 117:25
Beaurepaire E, Oheim M, Mertz J, (2001) Ultra-deep two-photon fluorescence excitation in turbid media. Opt Commun 188:25
Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJCM, van Gemert MJC (1997) Phys Med Biol 42:2255
Berger V (1998) Nonlinear photonic crystals. Phys Rev Lett 81:4136
Birge RR (1983) in Ultrasensitive Laser Spectroscopy, ed. D. S. Kliger, Academic, NY, USA, pp. 109-174
Bouma BE, Tearney GJ, Bilinsky IP, Golubovic B, Fujimoto JG (1996) Self phase-modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherence tomography. Opt Lett 21:1839
Boppart SA, Tearney GJ, Bouma BE, Southern JF, Brezinski ME, Fujimoto JG (1997) Noninvasive assessment of the developing xenopus cardiovascular system using optical coherence tomography. Proc Natl Acad Sci USA 94:4256
Born M, Wolf E (1999) Principle of Optics, 7th ed., Cambridge University Press, Cambridge, UK
Boyd RW (1992) Nonlinear Optics. Academic Press, San Diego, CA, USA
Broderick NGR, Ross GW, Offerhaus HL, Richardson DJ, Hanna DC (2000) Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Phys Rev Lett 84:4345
Brown Jr RM, Millard AC, Campagnola PJ (2003) Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt Lett 28:2207
Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second harmonic generation. Nature Medicine 9:796
Butcher PN, Cotter D (1990) The Elements of Nonlinear Optics. Cambridge University Press, London, UK
Campagnola PJ, Wei MD, Lewis A, Loew LM (1999) High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J 77:3341
Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA (2002) Three-dimensional high-resolution second-harmonic imaging of endogenous protein structural proteins in biological tissues. Biophy J 82:493
Canioni L, Rivet S, Sarger L, Barille R, Vacher P, Viosin P (2001) Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope. Opt Lett 26:515
Cassimeris L, Inoue S, Salmon ED (1988) Microtubule dynamics in the chromosomal spindle fiber: Analysis by fluorescence and high-resolution polarization microscopy. Cell Motil Cytoskel 10:185
Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015.
Chen IH, Chu SW, Sun CK, Cheng PC, Lin BL (2002) Wavelength dependent cell damages in multi-photon confocal microscopy. Opt Quan Electron 34:1251
Chen IH, Chu SW, Bresson F, Tien MC, Shi JW, Sun CK (2003) Three-dimensional electric field visualization utilizing electric-field-induced-second-harmonic-generation in nematic liquid crystals. Opt Lett 28:1338
Cheng JX, Xie XS (2002) Green’s function formulation for third-harmonic generation microscopy. J Opt Soc Am 19:1604
Cheng PC, Pan SJ, Shih A, Kim KS, Liou WS, Park MS (1998) Highly efficient upconverters for multiphoton fluorescence microscopy. J Microscopy 189:199
Cheng PC, Lin BL, Kao FJ, Gu M, Xu MG, Gan X, Huang MK, Wang YS (2001) Multi-photon fluorescence microscopy – the response of plant cells to high intensity illumination.Micron 32:661
Chichibu S, Azuhata T, Sota T, Nakamura S (1997) Luminescences from localized states in InGaN epilayers. Appl Phys Lett 70:2822
Chu SW, Chen IH, Liu TM, Cheng PC, Sun CK, Lin BL (2001) Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt Lett 26:1909
Chu SW, Chen IS, Liu TM, Sun CK, Lee SP, Lin BL, Cheng PC, Kuo MX, Lin DJ, Liu HL (2002) Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy. J Microscopy 208:190
Chu SW, Liu TM, Sun CK, Lin CY, Tsai HJ (2003A) Real-time second-harmonic-generation microscopy based on a 2-GHZ repetition rate Ti: sapphire laser. Opt Express 11:933
Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ, Sun CK (2003B) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11:3093
Chu SW, Chen SY, Chern GW, Tsai TH, Chen YC, Lin BL, Sun CK (2004) Studies of ��(2)/�n��(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys J 86:1
Claridge E, Cotton S, Hall P, Moncrieff M (2003) From colour to tissue histology: Physics based interpretation of images of pigmented skin lesions. Medical Image Analysis 7:489
Clays K. Van Elshocht S, Chi M, Lepoudre E, Persoons A (2001) Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal. J Opt Soc Am B 18:1474
Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD (2003) 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141:53
Denk W, Strickler JH, Webb WW (1990) 2-photon laser scanning fluorescence microscopy. Science 248:73
Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh resolution ophthalmic optical coherence tomography. Nat Med 7:502
Dombeck DA, Kasischke KA, Vishwasrao HD, Hyman BT, Webb WW (2003) Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc Natl Acad Sci USA 100:7081
Dombeck DA, Blanchard-Desce M, Webb WW (2004) Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 24:999
Du H, Fuh RA, Li J, Corkan A, Lindsey JS (1998) PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem photobiol 68:141
Dumeige Y, Vidakovic P, Sauvage S, Sagnes I, Levenson JA, Sibilia C, Centini M, D’Aguanno G, Scalora M (2001) Enhancement of second-harmonic generation in a 1-D semiconductor ohotonic bandgap. Appl Phys Lett 78:3021
Edgar JH, Strite S, Akasaki I, Amano H, Wetzel C, Eds. (1999) Properties, processing and applications of gallium nitride and related semiconductors, the Institution of Electrical Engineers, London, UK
Elias H, Pauly JE, Burns ER (1978) Histology and Human Microanatomy, 4th Edition, Piccin Medical Books, Padova, Italy
Empedocles SA, Neuhauser R, Bawendi MG (1999) Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399:126
Feng S, Winful HG (2001) Physical origin of the Gouy phase shift. Opt Lett 26:485
Fine F, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10:2350
Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118
Freund I, Deutsch M (1986A) 2nd harmonic microscopy of biological tissue. Opt Lett 11:94
Freund I, Deutsch M, Sprecher A (1986B) Connective tissue polarity. Optical second-harmonic microscopy, crossed- beam summation, and small-angle scattering in rat-tail tendon Biophys J 50:693
Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydrate Polymers 32:177
Gannaway JN, Sheppard CJR (1978) Second harmonic imaging in the scanning optical microscope. Opt Quantum Electron 10:435
Gauderon R, Lukins PB, Sheppard CJR (1999) Effect of a confocal pinhole in two-photon microscopy. Microsc Res Tech 47:210
Göppert –Mayer M (1931) Ueber Elementarakte mit zwei Quanenspruengen. Ann Phys 9:273
Greicius MD (2003) Neuroimaging in developmental disorders. Curr Opin Neurol 16:143
Gryczynski I, Szmacinski H, Lakowicz JR (1995) Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser. Chem Phys Lett 245:30
Gryczynski I, Malak H, Lakowiczy JR (1996) Multiphoton excitation of the DNA stains DAPI and Hoechst. Bioimaging 4:138
Gu M, Sheppard CJR (1995) Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy. J Microsc 177:128
Guo Y, Ho PP, Tirksliunas A, Liu F, Alfano RR (1996) Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses. Appl Opt 35:6810
Guo Y, Ho PP, Savage H, Harris D, Sacks P, Schantz S, Liu F, Zhadin N, Alfano RR (1997) Second-harmonic tomography of tissues. Opt Lett 22:1323
Guo Y, Savage HE, Liu F, Schantz SP, Ho PP, Alfano RR (1999) Subsurface structure of tissues investigated by noninvasive optical second harmonic tomography. Proc Natl Acad Sci USA 96:10854
Haus HA (1984) Waves and fields in optoelectronics, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
He GS, Markowicz PP, Lin TC, Prasad PN (2002) Observation of stimulated emission by direct three-photon excitation. Nature 415:767
Hell SW, Bahlmann K, Schrader M, Soini A, Malak H (1996) Three-photon excitation in fluorescence microscopy. J Biomed Optics 1:71.
Helmchen F, Waters J (2002) Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol 447:119
Herman B (1998) Fluorescence Microscopy, 2nd ed., Springer, Berlin, Germany
Huang D, Swanson EA, Lin CP, Cschuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178
Jacques SL, McAuliffe DJ, Blank IH, Parish JA (1987) Controlled removal of human stratum corneum by pulsed laser. J Invest Dermatol 88:88
Jiang Y, Hacker J (1994) Cylindrical-wave reflection and antireflection at media interfaces. Appl Opt 33:7431.
Kaiser W, Garrett CGB(1961) Two-Photon Excitation in CaF2: Eu2+. Phys Rev Lett 7:229
Kaliteevski MA, Abram RA, Nikolaev VV, Sokolovski GS (1999) Bragg reflectors for cylindrical waves. J Mod Opt 46:875
Kao FJ, Wang YS, Huang MK, Huang SL, Cheng PC (2000) Second-harmonic generation microscopy of tooth. SPIE Proceeding 4082:119
Kao FJ (2004) The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy. Microsc Res Tech 63:175
Kawashima T, Yoshikawa H, Adachi S, Fuke S, Ohtsuka K (1997) Optical properties of hexagonal GaN. J Appl Phys 82:3528
Keller BP, Keller S, Kapolnek D, Jiang WN, Wu YF, Masui H, Wu XH, Heying B, Speck JS, Mishra UK, DenBaars SP (1995) Metalorganic chemical vapor deposition growth of high optical quality and high mobility GaN. J Electron Mater 24:1707
Kim BM, Eichler J, Da Silva LB (1999) Frequency doubling of ultra- short laser pulses in biological tissues. Appl Opt 38:7145
Kim BM, Eichler J, Reiser KM, Rubenchik AM, Da Silva LB (2000) Collagen structure and nonlinear susceptibility: effect of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Laser Surg Med 27:329
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dynam 203:253
Kobayashi M, Fujita K, Kaneko T, Takamatsu T, Nakamura O, Kawata S (2002) Second-harmonic generation microscope with a microlens array scanner. Opt. Lett. 27:1324
Kogelnik H, Li T (1966) Laser beams and resonators. Appl Opt 5:1550
König K, So PTC, Mantulin WW, Gratton E (1997) Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt Lett 22:135
Lin BL, Cheng PC, Sun CK (2001) Absorption and multiphoton excited fluorescent properties of maize tissues. Maize Genetics Cooperation News Letters 75:61
Lin CJ, Kao FJ (2003) Focus on Microscopy, Genoa, Italy
Liu L, Oldenbourg R, Trimarchi JR, Keefe DL (2000) A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol 18:223
Liu TM, Chu SW, Sun CK, Lin BL, Cheng PC, Johnson I (2001) Multi-photon confocal microscopy using a femtosecond Cr:forsterite laser. Scanning 23:249
Maiman TH (1960) Stimulated optical radiation in ruby lasers. Nature 187:493
Maiti S, Shear JB, Williams RM, Zipfel WR, Webb WW (1997) Reports measuring serotonin distribution in live cells with three-photon excitation. Science 275:530
Marquez G, Wang LV, Lin SP, Schwartz JA, Thomsen SL (1998) Anisotropy in the absorption and scattering spectra of chicken breast tissue. Appl Opt 37:798
Masters BR, So PTC (2001) Confocal microscopy and two-photon excitation microscopy of human skin in vivo. Optics Express 8:2
McDonald DM, Choyke PL (2003) Imaging of angiogenesis: From microscope to clinic. Nat Med 9:713
Meek KM, Dennis S, Khan S (2003) Changes in the refractive index of the stroma and its extracellular matrix when the cornea swells. Biophys J 85:2205
Mertz J, Moreaux L (2001) Second harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt Commun 196:325
Millard AC, Wiseman PW, Fittinghoff DN, Wilson KR, Squire JA, Müller M (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt 38:7393
Millard AC, Jin L, Lewis A, Loew LM (2003) Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. Opt. Lett. 28:1221
Minsky M (1957) Microscopy apparatus. U.S. Patent 03013467.
Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29:97
Moreaux L, Sandre O, Mertz J (2000A) Membrane imaging by second-harmonic generation microscopy. J Opt Soc Am B 17:1685
Moreaux L, Sandre O, Blanchard-Desce M, Mertz J (2000B) Membrane imaging by simultaneous second-harmonic and two-photon microscopy. Opt Lett 25:320
Moreaux L, Sandre O, Charpak S, Blanchard–Desce M, Mertz J (2001) Coherent scattering in multi-harmonic light microscopy. Biophys J 80:1568
Müller M, Squier J, Wilson KR, Brakenhoff GJ (1998) 3D-microscopy of transparent objects using third-harmonic generation. J Microscopy 191:266
Mizutani G, Sonoda Y, Sano H, Sakamoto M, Takahashi T, Ushioda S (2000) Detection of starch granules in a living plant by optical second harmonic microscopy. J Luminescence 87-89:824
Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281:956
Nakamura S, Fasol G (1997) The Blue Laser Diode, GaN based light emitters and lasers. Spriger Verlag, Berlin, Germany
Nakamura S, Senoh M, Iwasa N, Nagahama S (1995) High-brightness ingan blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys 34:L797
Nakamura S, Senoh M, Nagahama S, Iwasa I, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K (1998) High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn J Appl Phys 37:L309
Nakamura S, Senoh M, Nagahama S, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Mukai T (1999) Violet InGaN/GaN/AlGaN-based laser diodes operable at 50°C with a fundamental transverse mode. Jpn J Appl Phys 38:L226
Palmes-Saloma C, Saloma C (2000) Long-depth imaging of specific gene expressions
in wholemount mouse embryos with single photon excitation confocal fluorescence microscope and FISH. J Struct Bio 131:56
Peleg G, Lewis A, Linial M, Loew LM (1999) Non-linear optical measurement of membrane potential around single molecules at selected cellular sites. Proc Natl Acad Sci USA 96:6700
Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW (2001) Three dimensional imaging of embryonic mouse kidney by two-photon microscopy. Am J Path 158:49
Piston DW, Masters BR, Webb WW (1994) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 178:20
Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, Drexler W, Apolonski A, Wadsworth WJ, Knight JC, Russell P St J, Vetterlein M, Scherzer E (2002) Submicrometer axial resolution optical coherence tomography. Opt Lett 27:1800
Prasad PN (2003) Introduction to Biophotonics, John Wiley & Sons, Hoboken, NJ, USA
Reid GD, Wynne K (2000) Ultrafast Laser Technology and Spectroscopy in Encyclopedia of Analytical Chemistry, Meyers RA ed., John Wiley & Sons Ltd, Chichester, UK
Ross MH, Romrell LJ (1989) Histology: A text and atlas. Williams and Wilkins, Baltimore, USA
Sauter EG (1996) Nonlinear optics. John Wiley & Sons, Hoboken, NJ, USA
Schiebener P, Straub J, Levelt Sengers JMH, Gallagher JS (1990) Refractive index of water and steam as function of wavelength, temperature and density. J Phys Chem Ref Data 19:677
Schaller, RD, Snee PT, Johnson JC, Lee LF, Wilson KR, Haber LH, Saykally RJ, Nguyen TQ, Schwartz BJ (2002) Nanoscopic interchain aggregate domain formation in conjugated polymer films studied by third harmonic generation near-field scanning optical microscopy. J Chem Phys 117:6688
Schins JM, Schrama T, Squier J, Brakenhoff GJ, Müller M (2002) Determination of material properties by use of third-harmonic generation microscopy. J Opt Soc Am B 19:1627
Schmidt TJ, Cho YH, Gainer GH, Song JJ, Keller S, Mishra UK, DenBaars SP (1998) Pump-probe spectroscopy of band tail states in metalorganic chemical vapor deposition-grown InGaN. Appl Phys Lett 73:1892
Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA (1994) Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 39:1705
Schönle A, Hell SW (1998) Heating by absorption in the focus of an objective lens. Opt. Lett. 23:325
Shack R, Bell B, Hillman B, Kingston R, Landesman A, Shoemaker R, Vukobratovich D, Bartels PH (1982) Ultrafast laser scanner microscopy--first performance tests. IEEE International Workshop on Physics and Engineering in Medical Imaging. viii + 292:49
Sheppard CJR, Shotton DM (1997) Confocal Laser Scanning Microscopy, BIOS Scientific Publisher, Oxford, UK
Shen YR (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519
Shen YR (2002) The Principles of Nonlinear Optics, John Wiley & Sons, Hoboken, NJ, USA
Shreve AP, Trautmen JK, Owens TG, Albrecht AC (1990) Two-photon excitation spectroscopy of thylakoid mem- branes from phaeodactylum tricornutum: evidence for an in vivo two-photon allowed carotenoid state. Chem Phys Lett 170:51
Singh S, Bradley LT (1964) Three-photon absorption in napthalene crystals by laser excitation. Phys Rev Lett 12:612
Skromme BJ, Zhao H, Wang D, Kong HS, Leonard MT, Bulman GE, Molnar BJ (1997) Strain determination in heteroepitaxial GaN. Appl Phys Lett 71:829
So PTC, Kim H, Kochevar IE (1998) Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Optics Express 3:339
Squier JA, Müller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315
Squirell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763
Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB (2002A) Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7:205
Sun CK, Chu SW, Tai SP, Keller S, Mishra UK, Denbaars SP (2000) Mapping piezoelectric-field distribution in gallium nitride with scanning second-harmonic generation microscopy. Appl. Phys. Lett. 77; 2331
Sun CK, Chen CC, Chu SW, Tsai TH, Chen YC, Lin BL (2003) Multi-harmonic generation biopsy of skin. Opt Lett 28:2488
Sun CK, Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ (2004) Higher harmonic generation microscopy for developmental biology. J Struct Bio 147:19
Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I (1997) Determination of piezoelectric fields in GaInN strained quantum wells using the quantum-confined Stark effect. Appl Phys Lett 73:1691
Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Hee MR, Fujimoto JG (1995) Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt Lett 20:2258
Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037
Tirlapur UK, König K, Peuckert C, Krieg R, Halbhuber JJ (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Research 263:88
Tsang TYF (1995) Optical third-harmonic generation at interfaces. Phys Rev A 52:4116
Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL (1995) Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci USA 92:2239
Uttenweiler D, Weber C, Fink RHA (1998) Mathematical modelling and fluorescence imaging to study the ca2+-turnover in skinned muscle fibres. Biophys J 74:1640
Verbiest T, Elshocht SV, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz TJ, Persoons A (1998) Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282:913
Vogel A, Noack J, Hüttmann G, Paltauf G (2002) Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold. Proc. SPIE 4633A:1
Ward JF, New GHC (1969) Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. Phys. Rev 185:57
Wokosin DL, Centonze VE, Crittenden S, White J (1996) Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4:208
Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multi-photon Fluorescence Excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763
Yasuno Y, Makita S, Sutoh Y, Itoh M, Yatagai T (2002) Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt Lett 27:1803
Yelin D, Silberberg (1999A) Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5:169
Yelin D, Silberberg Y, Barad Y, Patel JS (1999B) Depth-resolved imaging of nematic liquid crystals by third harmonic microscopy. Appl Phys Lett 74:3107
Yelin D, Oron D, Korkotian E, Segal M, Silberberg Y (2002) Third-harmonic microscopy with a titanium-sapphire laser. Appl Phys B 74:S97
Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11:1385
You H, Nogami M (2004) Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation. Appl Phys Lett 84:2076
Yuste R, Denk WW (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682
Zipfel WR, Williams RM, Webb WW (2003A) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech 21:1369
Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003B) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075
Zhao T, Chen ZH, Chen F, Shi WS, Lu HB, Yang GZ (1999) Enhancement of second-harmonic generation in BaTiO3 /SrTiO3 superlattices. Phys Rev B 60:1697
Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔