(3.236.122.9) 您好!臺灣時間:2021/05/12 20:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂俊泓
研究生(外文):Chun-Hung Lu
論文名稱:斑馬魚第二型角質蛋白基因zfCKII上游調控序列之分析
論文名稱(外文):Characterization of the Regulatory Elements of the Zebrafish Type II Keratin Gene, zfCKII
指導教授:蔡懷楨蔡懷楨引用關係
指導教授(外文):Huai-Jen Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:49
中文關鍵詞:皮膚調控角質蛋白
外文關鍵詞:SkinRegulationKeratin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中間絲蛋白(intermediate filament)共分成五大類,第一型角質蛋白(type I keratin)及第二型角質蛋白(type II keratin)分屬其中最主要的兩大類別。在哺乳類動物之中,角質蛋白主要是表現在上皮細胞,並且已知至少有30個基因可以表現出角質蛋白,調控機制和作用的調控因子也有一些研究。然而,在斑馬魚(Danio rerio)中,雖然對於角質蛋白如表現位置和時間等特性已經有了很多的研究,但是目前角質蛋白基因在胚胎發育時的調控機制尚不清楚。在本文中,我們選殖出一段斑馬魚第二型角質蛋白基因(zebrafish type II cytokeratin, zfCKII)的上游調控區-2274到-1(-2274/-1)的序列,利用不同長度上游序列來驅動紅螢光蛋白基因,透過基因轉殖技術觀察其在轉殖魚中各組織的表現狀態。結果顯示,zfCKII上游DNA片段含-2274/-1、-1500/-1、-1000/-1、-600/-1、-500/-1、-400/-1、和-200/-1皆能驅使紅螢光報導基因在皮膚表現紅螢光。在-100/-1和-90/-1中則完全無紅螢光表現。因此,綜合這些結果顯示-200/-1片段是驅動紅螢光報導基因在皮膚表現的最小DNA調控片段。然而,在-1500/-1、-1000/-1、-600/-1、和-500/-1除了皮膚外,分別各有52、64、49及68%在肌肉部位表現出紅螢光,顯示-2274/-1500可能具有抑制肌肉表現的調控區存在,雖然將此段序列接到胚胎早期肌肉細胞命運決定因子myf-5基因-300/-1的上游來驅動綠螢光蛋白基因,並無明顯的抑制作用。進一步地,分析斑馬魚-200/-100序列,發現-151/-121包含可能和轉錄因子krüppel-like factor結合的片段。若將-146/143上原本的GGGG突變為AAAA,會使得DNA調控片段幾乎失去驅動紅螢光報導基因在皮膚上表現的能力。故此(-146/143)片段對於斑馬魚角質蛋白基因在皮膚中的表現是十分重要的。
Type I (acidic) and type II (basic) keratins, two major classes of intermediate filament proteins, is encoded by at least 30 genes and are mainly expressed in epithelial cells in mammals. The regulation of keratin expression and transcription factors have been studied in mammals. However, the role of regulation is still unclear although there are many studies on the expression pattern of keratin in zebrafish (Danio rerio). In this report, we characterized an upstream 2274 bp (-2274/-1) of zebrafish type II cytokeratin (zfCKII) by transgenic analysis. Series of upstream deletions linked to the red fluorescent protein (RFP) reporter were constructed and microinjected into one-cell fertilized eggs. Transient transgenic analysis showed that the segments of -2274/-1, -1500/-1, -1000/-1, -600/-1, -500/-1, -400/-1 and -200/-1 enabled to direct RFP to be expressed in skin. But, the expression of RFP was completely abolished in the transgenic fish when the segment of -90/-1 and -100/-1 were transferred, indicating that -200/-1 is the minimal promoter to drive RFP expression in skin. Nevertheless, the segments of -1500/-1, -1000/-1, -600/-1, and -500/-1 were capable of directing RFP expression not only in skin but also in skeletal muscle. The expression rate in muscle ranged from 50 to 70%, compared to 0% of -2274/-1-injected embryos. Therefore, we propose that a muscle repressive element may exist in -2274/-1500, although the GFP expression rate in muscle of embryos injected with -2274/-1500 fused with -300/-1 of muscle regulatory factor myf-5 did not decrease significantly. Sequence analysis of zfCKII -200/-100 showed that there is a putative krüppel-like factor binding site located at -151/-121. When we mutated the segment -146/-143 from GGGG to AAAA, we found that this mutated segment almost lost its function to drive RFP expression in skin, suggesting that -146/-143 is an essential sequence for keratin expression in the skin of zebrafish.
中文摘要 1
Abstract 3
壹、 前言 4
貳、 實驗材料 10
參、 實驗方法 12
肆、 結果 21
伍、 討論 26
陸、 參考資料 32
圖表 36
附錄(一) 斑馬魚胚胎發育時期圖 45
Ainis L, Tagliafierro G, Mauceri A, Licata A, Ricca MB, Fasulo S. 1995. Cytokeratin type distribution in the skin and gill epithelia of the Indian fresh-water catfish, Heteropenustes fossilis as detected by immunohistochemistry. Folia Histochem Cytobiol 33:77–81.

Bickenbach JR, Greer JM, Bundman DS, Rothnagel JA, Roop DR. 1995. Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J Invest Dermatol 104:405–10.

Brembeck FH. and Rustgi AK. 2000. The tissue-dependent keratin 19 gene transcription is regulated by GKLF/KLF4 and sp1. J. Biol. Chem. 275:28230–28239.

Byrne C, Tainsky M, Fuchs E. 1994. Programming gene expression in developing epidermis. Development 120:2369–83.

Chua KL, Kim TM. 2000. Type I and type II cytokeratins cDNAs from the zebrafish (Danio rerio) expression patterns during early development. Differentiation 66:31–41.

Conrad M, Lemb K, Schubert T, Markl J. 1998. Biochemical identifi- cation and tissue-specific expression patterns of keratins in the zebrafish (Danio rerio). Cell Tissue Res 293:195–205.

Dang DT, Pevsner J, Yang VW. 2000. The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol. 32:1103-1121.

Druger RK, Levine EM, Glasgow E, Jones PS, Schechter N. 1992. Cloning of a type I keratin from goldfish optic nerve: differential expression of keratins during regeneration. Differentiation 52:33– 43.

Fucks E, Green H. 1980. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033–42.

Fuchs E, Weber K. 1994. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382.

Giordano S, Glasgow E, Tesser P, Schechter N. 1989. A type II keratin is expressed in glial cells of the goldfish visual pathway. Neuron 2:1507–1516.

Giordano S, Hall C, Quitschke W, Glasgow E, Schechter N. 1990. Keratin 8 of simple epithelia is expressed in glia of the goldfish nervous system. Differentiation 44:163–172.

Gong Z, Ju B, Wang X, He J, Wan H, Sudha PM, Yan T. 2002. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 223:204–215.

Groff JM, Naydan DK, Higgins RJ, Zinkl JG. 1997. Cytokeratin- filament expression in epithelial and non-epithelial tissues of the common carp (Cyprinus carpio). Cell Tissue Res 287:375– 384.

Hardman MJ, Moore L, Ferguson MW, Byrne C. 1999. Barrier formation in the human fetus is patterned. J Invest Dermatol 113:1106–13.

Hatzfeld M, Maier G, Franke WW. 1987. Cytokeratin domains involved in heterotypic complex formation determined by in-vitro binding assays. J Mol Biol 197:237–255

Jiang, C. K., S. Flanagan, M. Ohtsuki, K. Shuai, I. M. Freedberg, and M. Blumenberg. 1994. Disease-activated transcription factor: allergic reactions in human skin cause nuclear transcription of STAT-91 and induce synthesis of keratin K17. Mol. Cell. Biol. 14:4759–4769.

Jiang, C. K., T. Magnaldo, M. Ohtsuki, I. M. Freedberg, F. Bernerd, and M. Blumenberg. 1993. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc. Natl. Acad. Sci. USA 90:6786–6790.

Kaczynski J, Cook T, Urrutia R. 2003. Sp1- and krüppel-like transcription factors. Gen Biol. 4:206.1-206.8.

Klevit RE. 1991. Recognition of DNA by Cys2, His 2 zinc fingers. Science. 253:1369-1393.

Klymkowsky M. 1995. Intermediate filaments:new proteins, some answers, more questions. Curr Opin Cell Biol 7:46–54

Komine, M., L. S. Rao, T. Kaneko, M. Tomic-Canic, K. Tamaki, I. M. Freedberg, and M. Blumenberg. 2000. Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J. Biol. Chem. 275:32077–32088.

Koster MI, Kim S, Mills AA, DeMayo FJ, Roop, DR. 2003. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18(5):465-469.

Koster MI, Roop, DR. 2004. The role of p63 in development and differentiation of the epidermis. J Derm Science 34:3-9.

Markl J, Franke WW. 1988. Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation 39:97– 122.

Markl J, Winter S, Franke WW.1989. The catalog and the expression complexity of cytokeratins in a lower vertebrate: biochemical identification of cytokeratins in a teleost fish, the rainbow trout. Eur J Cell Biol 50:1–16.

Ma, S., L. Rao, I. M. Freedberg, and M. Blumenberg. 1997. Transcriptional control of K5, K6, K14, and K17 keratin genes by AP-1 and NF-kappaB family members. Gene Expr. 6:361–370.

M’Boneko V, Herker HJ. 1988. Development and morphology of the periderm of mouse embryos (days 9 –12 of gestation). Acta Anat (Basel) 133:325–336.

Moll R, Franke WW, Schillar DL, Geiger B, Krepler R. 1982. The catalog of human cytokeratins: patterns of expression in normal epithelia. Cell 31:11–24.

Nickoloff, B. J., C. E. Griffiths, and J. N. Barker. 1990. The role of adhesion molecules, chemotactic factors, and cytokines in inflammatory and neoplastic skin disease—1990 update. J. Investig. Dermatol. 94:151S–157S.

Oates AC, Pratt SJ, Vail B, Yan Yl, Ho RK, Johnson SL, Postlethwait JH, Zon LI. 2001. The zebrafish klf gene family. Blood 98:1792-1801.

Philipsen S, Suske G. 1999. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27:2991-3000.

Schaffeld M, Lobbecke A, Lieb B, Markl J. 1998. Tracing keratin evolution: catalog, expression patterns and primary structure of shark (Scyliorhinus stellaris) keratins. Eur J Cell Biol 77:69 – 80.

Shields JM, Yang VW. 1998. Identification of the DNA sequence that interacts with the gut-enriched krüppel-like factor. Nucleic Acids Res 26:796-802.

Shuai, K., C. M. Horvath, L. H. Huang, S. A. Qureshi, D. Cowburn, and J. E. Darnell. 1994. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828.

Wu YJ, Parker LM, Binder NE, Beckett MA, Sinard JH, Griffiths CT, Rheinwald JG. 1982. The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia. Cell 31:693–703.

Zaccone G, Howi AJ, Mauceri A, Fasulo S, Lo Casio P, Youson JH. 1995. Distribution patterns of cytokeratins in epidermis and horny teeth of the adult sea lamprey, Petromyzon marinus. Folia Histochem Cytobiol 33:69–75.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 鍾聖校(1994)。對科學教育錯誤概念研究之省思。教育研究資訊,2(3),89-110。
2. 劉秀嫚(1998)。合作學習的教學策略。公民訓育學報,7,285-294。
3. 盧富美 (1992)。談合作學習及其教學流程。教師之友,33(4),3-8。
4. 葉靖雲 (1996)。三種課程本位數學評量模式的效度研究。國立彰化師範大學特殊教育學報,11,35-77。
5. 郭至和 (2000)。合作學習教學法─在國小社會科及鄉土教學活動之運用。教育實習輔導季刊,6(1),63-73。
6. 張新仁(1989)。學習策略訓練之初探。教育文粹,18,86-94。
7. 張淑美(1992)。合作學習的涵義、實施與成效。教育文粹,21,20-25。
8. 陳淑娟 劉祥通(2001)。國小教師進行數學討論活動困難之探討。教育研究資訊雙月刊,9(2),125-146。
9. 陳明和(1997)。「合作學習法」在國語科教學的可行性。中國語文,481,8-11。
10. 邱美虹、林妙霙(1996)。合作學習對國三學生學習「地層記錄地質事件」的影響。教育研究資訊,4(6),108-128。
11. 林碧珍(1985)。數學概念的形成與學習。國教世紀,21(2)。
12. 呂溪木 (1983)。從國際科展看我國今後科學教育的發展方向。科學教育月刊,64,13-19。
13. 邢敏華 (1995)。評介課程本位測量在特殊教育上的應用。特殊教育季刊,54,1-6。
14. 吳美嬌(1998)。合作學習的教學策略與示例在公民與道德科的應用。菁莪季刊,36,41-48。
 
系統版面圖檔 系統版面圖檔