(3.238.130.97) 您好!臺灣時間:2021/05/14 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙啟仲
研究生(外文):Chi-Chung Chao
論文名稱:軟模氣體熱壓應用於大面積微奈米壓印製程研究
論文名稱(外文):Study on the Large-area Micro-Nano Imprinting using Soft Mold and Gas Pressure Mechanism
指導教授:楊申語楊申語引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:130
中文關鍵詞:氣體熱壓奈米壓印PDMS軟模大面積壓印
外文關鍵詞:gas hot emnano imprintinglarge-area imprinting
相關次數:
  • 被引用被引用:12
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

本論文致力於大面積熱壓式微奈米壓印製程探討。當前的熱壓式壓印製程,有效壓印面積無法有效提升,主要原因在於施壓機構使用壓板,壓板施壓容易導致壓印力分佈不均;壓印模具若是屬於矽基底或玻璃基底模,容易發生破裂。而且當使用在奈米壓印時,由於阻劑塗佈層極薄(約數百奈米),有效的壓印面積往往受限於模具與基板之平坦度或壓印盤面之平坦度,這些常造成模具與基板間的接觸不完整。

本研究使用PDMS軟模並使用氣體施壓進行微奈米壓印。本研究第一部份比較PDMS軟模與矽模、鎳模在氣體壓印均勻度、有效壓印面積及模具表面抗沾黏能力。結果發現,利用PDMS精確翻鑄微奈米結構,再搭配氣體進行熱壓印成型,PDMS軟模可與基材表面完整接觸,因此有效壓印面積大幅提昇,且達到均勻的壓印效果,成型結構的精度品質也能各處維持一致;而且PDMS軟模表面自由能低,壓印時不易與阻劑沾黏,是製程上一大優勢,且PDMS軟模製作容易、翻鑄時間短,可有效降低成本。

本研究進一步有系統探討PDSM軟模氣體熱壓印製程,包括:解決軟模壓印變形問題、探討製程參數對轉寫效果之影響、評估PDMS模具壽命。結果發現:在軟模四周使用高度小於軟模且緊密配合的支承載具(Holder),可避免壓印變形。製程參數中,熱壓壓力影響不大,但會使殘留層厚度不同;熱壓溫度取決於阻劑PMMA之分子量大小,一般需高於Tg溫度40∼60℃;再者熱壓時間影響不大,30秒∼5分鐘皆可成型。以反覆施壓及升降溫來評估壽命,發現在20週期內未見缺陷;但以實際壓印測試,結果顯示模具壽命與結構的特徵尺寸、深寬比及週期值有關。

最後並實際進行6吋及12吋大面積壓印實驗,並嘗試壓印曲面。實驗結果顯示,以PDMS軟模搭配氣體加壓方式(軟模與軟壓),確實在大面積壓印有極佳的表現,並且可以在曲面上成旦F到均勻的壓印。本研究可壓印出最小特徵尺寸約為300nm。


Abstract

This thesis is devoted to the development a system and process for large area micro-nano imprinting. Conventional molds for impriting are of Si-based, glass-base or electroplated metal-based. Poor contact is a common problem when such molds are used for replication, especially when the area is large. When the substrate and the mold are brought into contact and are compressed using conventional hot press, the accuracy and area of replication were limited due to the contact condition and the inherent non-uniform pressure distribution. Si-wafers are easily broken if imprinting area is very large. Besides, when the resist coated thickness is thin, the effective imprinting area is further limited.

In this study, the soft mold made of PDMS is used; Gas is used employed as pressuring media. Compared to Si-base and Ni-base molds using conventional hot-plate compressing, the contact condition between the PDMS mold and the substrate is much better, as demontrated in the image using a pressure film. Conformal contact and uniform imprinting pressure throughout the whole area can be achieved. This technique has great potential for effectively replicating micro-nano structures directly from large wafers. Furthermore, PDMS mold had low surface energy can anti-adhere to resist.

For developing the PDMS molds for gas-assited imprinting process, three studies have been carried out: (i) preventing distortion of the PDMS mold, (ii) understanding the replication capacity under different processing parameters, and (iii) evaluating the mold life. Results showed that using a holder to support PDMS mold can overcome distortion. The rigid outer holder should match the outward lateral geometry of the PDMS mold with a height equal to or less than that of the PDMS mold. Imprinting using a gas pressure between 10 to 100 kgf/cm2 and with imprinting time between 30 seconds to 5 minutes yields good replication; but different gas pressure will determine the final thickness of the residual layer of photo-resist. Imprinting temperature is found to depend upon the molecular weight of resist, usually they are 40~60℃above the Tg''s of the resist. Mold life depends on the micro-features; it is shorter than molds made of other material.

The capacity of gas-assisted imprinting using PDMS molds for large-area micro-feature replications has been demonstrated in this study. Succesful replication of micro-features onto the photo-resists on flat 6-inch and 12-inch Si substrates and 2-inch curved surface have been achieved. The minimum critical dimension is about 300nm.


目 錄

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅶ
圖目錄 Ⅷ


第一章 導 論
1.1 前言 1
1.2 半導體光微影技術之限制 2
1.3 熱壓式奈米壓印製程及其關鍵技術 3
1.4 氣體微熱壓成型方法 4
1.5 研究動機與目的 5
1.6 論文內容架構 6

第二章 文獻回顧
2.1 各種奈米轉印技術簡介 12
2.2 熱壓式壓印微影文獻回顧 15
2.2.1 奈米結構壓印模具製作 15
2.2.2 阻劑材料 16
2.2.3 壓印製程 17
2.2.4 元件應用 20

第三章 壓印實驗設置與方法
3.1 壓印方法 24
3.1.1 氣體壓印設備 24
3.1.2 壓印製程步驟 25
3.2 壓印模具製備與翻模技術 26
3.2.1 塑膠熱壓成型翻模 26
3.2.2 PDMS翻模 27
3.2.3 電鑄鎳模 29
3.2.4 翻模成品量測評估 30
3.3 PMMA阻劑製備塗佈 31
3.3.1 PMMA阻劑調製 31
3.3.2 PMMA阻劑塗佈 32
3.3.3 塗佈膜厚量測 35
3.4 本章結論 36

第四章 PDMS軟模、矽模及鎳模應用於壓印製程之比較
4.1 壓力均勻度實驗探討 49
4.1.1 實驗設置 49
4.1.2 實驗結果與討論 50
4.2 接觸面平坦度對有效壓面積之影響 53
4.2.1 實驗設置 53
4.2.2 實驗結果與討論 53
4.3 模具表面抗沾黏處理 55
4.3.1 表面自由能與沾黏問題 55
4.3.2 簡易接觸角量測評估 57
4.3.3 抗沾黏處理 58
4.4 本章結論 60

第五章 PDMS模具壓印成型探討
5.1 PDMS軟模受壓變形及其解決 74
5.1.1 利用感壓軟片評估PDMS軟模受壓變形 74
5.1.2 以支承載台解決PDMS軟模受壓變形 75
5.1.3載具支承PDMS軟模壓印實驗 77
5.2 製程參數對轉寫效果影響實驗 79
5.2.1 壓力之影響 80
5.2.2 溫度之影響 81
5.2.3 熱壓時間之影響 82
5.3 PDMS模具壽命評估 82
5.3.1 壓力測試 82
5.3.2 反覆升降溫測試 82
5.3.3 實際壓印測試 83
5.4 大面積壓印實驗 83
5.4.1 DVD-R碟片壓印 83
5.4.2 光罩壓印 84
5.4.3 12吋晶圓級大面積壓印 84
5.5 曲面壓印實驗 85
5.6 本章結論 86

第六章 結論與未來研究方向
6.1 結論 106
6.2 未來研究方向 108

參考文獻 109
附錄A 感壓軟片 113
附錄B 已發表著作 115


參考文獻
Alkaisi, M. M. , Blaikie, R. J. and McNab, S. J., “Low temperature nanoimprint lithography using silicon nitride molds”, Microelectronic Engineering, Vol. 57–58, pp. 367–373 (2001).

Chou, S. Y., Keimel, C. and Gu, J., “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp. 835-837 (2002).

Chou, S. Y., Krauss, P. R. and Renstrom, P. J., “ Nanoimprint lithography ,” J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133 (1996).

Chou, S. Y., Krauss, P. R. and Renstrom, P. J., “Imprint of sub-25 nm vias and trenches in polymers ,” Appl. Phys. Lett., Vol. 67, No. 21, pp. 3114-3116 (1995).

Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. and Zhuang, L., “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp. 2897-2904 (1997).

Chang, J. H. and Yang, S. Y., “Gas Pressurized Hot Embossing for Transcription of Micro-Features”, Microsystem Technologies, Vol. 10, No. 1, pp. 76-80 (2003).

Chang, J. H. and Yang, S. Y., “Development of Fluid-Based Heating and Pressing Systems for Micro Hot Embossing”, Microsystem Technologies, (2004) (accepted)

Deguchi, K., Takeuchi, N. and Shimizu, A., Microprocesses and Nanotechnology Conference, 100 (2001).

Eliott, D. J., “Integrated Circuit Fabrication Technology”, McGraw Hill, (1989).

Guo, L., Krauss, P. R., and Chou, S. Y., “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Appl. Phys. Lett. ”, Vol. 71, No. 13, pp. 1881-1883 (1997).

Heckele, M., Bacher, W. and Muller, K. D., "Hot embossing - the molding technique for plastic microstructures", Microsystem Technologies, Vol. 4, pp. 122-124 (1998).

Heidari, B., Maximov, I., and Montelius, L., “Nanoimprint lithography at the 6 in. wafer scale”, J. Vac. Sci. Technol. B , Vol. 18, No. 6, pp. 3582-3585 (2000).

Heyderman, L. J., Schift, H., David, C., Ketterer, B., Auf der Maur, M. and Gobrecht, J., “Nanofabrication using hot embossing lithography and electroforming”, Microelectronic Engineering, vol. 57–58, pp. 375–380 (2001).

Heyderman, L. J., Ketterer, B., Bachle, D., Glaus, F., Haas, B., Schift, H., Vogelsang, K., Gobrecht, J., Tiefenauer, L., Dubochet, O., Surbled, P. and Hessler, T., “High volume fabrication of customised nanopore membrane chips”, Microelectronic Engineering, Vol. 67–68, pp. 208–213 (2003).

Johnson, S. C., Bailey, T. C., Dickey, M. D., Kim, E. K., Smith, B. J., Stacey, N. A., Ekerdt, J. G., Wilson, C. G., Jamieson, A. T., Resnick, D. J., Mancini, D. P., Dauksher, W. J. and Nordquist ,K. J.,” Step and Flash Imprint Lithography: Materials and Process Developments”, Proc. SPIE 5037: submitted (2003).

Lin, C. R., Chen, R. H. and Hung, C., “The characterisation and finite-element analysis of a polymer under hot pressing”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 230-235 (2002).

Lebib, A., Chen, Y., Cambril, E., Youinou, P., Studer, V., Natali, M., Pepin, A., Janssen, H. M. and Sijbesma, R. P., “Room-temperature and low-pressure nanoimprint lithography”, Microelectronic Engineering, Vol. 61–62, pp. 371–377 (2002).

Li, M., Chen, L., and Chou, S. Y., “Direct three-dimensional patterning using nanoimprint lithography ”, Appl. Phys. Lett. ”, Vol. 78, No. 21, pp. 3322-2904 (2001).

Li, M., Wang, J., Zhuang, L. and Chou, S. Y., “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography”, Appl. Phys. Lett. ”, Vol. 76, No. 6, pp. 3322-2904 (2000).

Narasimhan, J. and Papautsky, I., “Polymer embossing tools for rapid prototyping of plastic microfluidic devices”, J. Micromech. Microeng, Vol. 14, pp. 96-103 (2004).

Ong, N. S., Koh, Y. H. and Fu, Y. Q., “Microlens array produced using hot embossing process”, Microelectronic Engineering, Vol. 60, pp. 365-379 (2002).

Pepin, A., Youinou, P., Studer, V., Lebib, A. and Chen, Y., “Nanoimprint lithography for the fabrication of DNA electrophoresis chips”, Microelectronic Engineering, Vol. 61–62, pp. 927–932 (2002).

Scheera, H.-C. and Schulz, H., “Problems of the nanoimprinting technique for nanometer scale pattern definition”, J. Vac. Sci. Technol. B, Vol. 16, No. 6, pp. 3917-3921 (1998).

Schulz, H., Lyebyedyev, D. and Scheer, H.-C., “Master replication into thermosetting polymers for nanoimprinting”, J. Vac. Sci. Technol. B, Vol. 16, No. 6, pp. 3917-3921 (1998).

Tana, H., Gilbertson, A. and Chou, S. Y., “Roller nanoimprint lithography”, J. Vac. Sci. Technol. B, Vol. 16, No. 6, pp. 3926-3928 (1998).

Taniguchi, J., Tokano, Y., Miyamoto, I., Komuro, M. and Hiroshima, H., “Diamond nanoimprint lithography,” Nanotechnology, Vol. 13, pp. 592–596 (2002).

Willson, C. G., Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi, B., Wedlake, M., Michaelson, T., Sreenivasan, S. V. and Ekerdt, J. G., “Step and Flash Imprint Lithography: A new approach to high resolution patterning”, Proc. SPIE 3676(I): 379 (1999).

Xia, Y. and Whitesides, G. M., "Soft Lithography", Angew. Chem. Int. Ed., 37, 550-575. (1998).

Xing, R., Wang, Z., and Hana, Y., “Embossing of polymers using a thermosetting polymer mold made by soft lithography”, J. Vac. Sci. Technol. B, Vol. 21, No. 4, pp. 1318-1322 (2003).


張哲豪,”流體微熱壓製程開發研究”,臺灣大學博士論文,民國93年6月。

賴文童,”微結構熱壓成形缺陷之探討”,交通大學碩士論文,民國89年6月。

林佳榮,”聚合物熱壓成形之有限元素分析研究”,交通大學博士論文,民國92年6月。

陳立俊,”微電子材料與製程”,中國材料科學學會,民國89年11月。



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top